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Abstract
The success of any Text Independent Speaker Identification
and/or Verification system relies upon the system’s capability
to learn discriminative features.

In this paper we propose a Convolutional Neural Network
(CNN) Architecture based on the popular Very Deep VGG [1]
CNNs, with key modifications to accommodate variable length
spectrogram inputs, reduce the model disk space requirements
and reduce the number of parameters, resulting in significant re-
duction in training times. We also propose a unified deep learn-
ing system for both Text-Independent Speaker Recognition and
Speaker Verification, by training the proposed network architec-
ture under the joint supervision of Softmax loss and Center loss
[2] to obtain highly discriminative deep features that are suited
for both Speaker Identification and Verification Tasks.

We use the recently released VoxCeleb dataset [3], which
contains hundreds of thousands of real world utterances of over
1200 celebrities belonging to various ethnicities, for bench-
marking our approach. Our best CNN model achieved a Top-
1 accuracy of 84.6%, a 4% absolute improvement over Vox-
Celeb’s approach, whereas training in conjunction with Center
Loss improved the Top-1 accuracy to 89.5%, a 9% absolute im-
provement over Voxceleb’s approach.
Index Terms: speaker identification, speaker recognition,
speaker verification, convolutional neural network, discrimina-
tive feature learning

1. Introduction
With the advent of large datasets that have significant appli-
cations in a multitude of real world scenarios, Deep Learning,
spearheaded by Convolutional Neural Networks, has ascended
as the go-to approach in the fields of computer vision [4], [5],
speech recognition [6], [7] and other related fields due to their
inherent capability to deal with real world, noisy datasets with-
out the need for handcrafted feature engineering.

Text independent Speaker Recognition in unconstrained
conditions is a challenging problem, due to extrinsic and in-
trinsic variations; extrinsic variations being background chatter,
music, laughter, reverberations, faulty recording device and dis-
tortions caused by the transmission medium; whereas intrinsic
variations include age, accent, emotion and intonation of the
speaker, among others. [8]

The innate capability to learn discriminative features is cru-
cial for any Speaker Recognition system to perform well. Re-
cent works have focused on utilizing bottleneck features from
DNNs [9], training deep embeddings for utilization by a PLDA
backend [10] or training an end-to-end Deep CNN embedding
using Constrastive Loss [3] or Triplet Loss [11]. These ap-
proaches require training a very diverse set of networks that try
to minimize diverse sets of objective functions, which requires
considerable training efforts and compute.

Recently introduced VGG family of CNNs [1] demon-
strated that very deep CNNs, consisting solely of small 3x3

convolution filters achieved drastic improvement over previous
baselines on the ImageNet [4] competition. This success was
attributed largely to the usage of smaller receptive fields (3x3
kernel) as well as increased network depth, which is facilitated
by the parameter efficient nature of 3x3 kernels.

In this paper, we propose a new Convolutional Neural Net-
work Architecture based on VGG Config-A and Config-B [1],
owing to their aforementioned characteristics, with key mod-
ifications to accommodate variable length spectrogram input
along with a reduction in network parameters and storage space
requirements.

The question then arises: since the tasks of Speaker Identifi-
cation and Speaker Verification have the same underlying objec-
tive, which is, identifying a previously known speaker as well
as learning to discriminate between distinct speakers, wouldn’t
it be beneficial to have a unified approach that is capable of
solving both the problems? To this end, we also propose a uni-
fied deep learning system for both Text-Independent Speaker
Recognition and Speaker Verification which trains the CNN un-
der the joint supervision of Softmax loss and Center loss [2],
thus mitigating the need for training distinct networks for the
two tasks.

We utilize the Voxceleb [3] dataset for quantifying and
comparing the performance of our proposed approach on both
Speaker Identification and Verification. Voxceleb dataset is a
large scale, gender balanced dataset comprising of over 140,000
utterances belonging to 1251 distinct celebrities of different eth-
nicities, in real-world conditions.

2. Related Works
Speaker recognition is a domain where Gaussian Mixture Mod-
els (GMMs) dominated the field for quite some time ([12],
[13]), with Joint Factor analysis (JFA) [14] and i-vector based
methods [15] surpassing them in more recent times. All the
above mentioned methods rely upon low dimensional Mel
Frequency Cepstrum Coefficients (MFCC) as input features.
MFCCs are known to suffer from performance degradation un-
der real world noise conditions as demonstrated by [16], [17],
which has paved the way for the recent shift to Deep Convo-
lutional Neural Networks for various speech based applications
[18], [19], [20].

Speaker Recognition comprises of two subtasks: Speaker
Identification and Speaker Verification. Usually, the method-
ologies for training networks pertaining to the two aforemen-
tioned tasks are different, where identification (in a closed set)
is usually treated as a n-way classification problem and a clas-
sification model based on Softmax Loss is trained for the same
[3], whereas Speaker Verification, which involves determining
whether there is a match between a given utterance and a target
model, is solved by training a discriminative embedding ([10],
[11]) or using bottleneck features from classification models
[9].

Recently, [19] examined various CNN architectures for
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Acoustic Scene Classification, establishing the effectivity of di-
rect analogs of CNNs used for image classification in classifica-
tion of acoustic scenes. By contrast, we have proposed an archi-
tecture developed specifically for Speaker Recognition, which
is a much fine-grained classification task, as compared to acous-
tic scene classification. Also, the network architectures they
evaluated, being direct altercations of prevalent Image Classifi-
cation CNNs, couldn’t handle variable length inputs, an impor-
tant characteristic to have for Speaker Recognition.

[20] studied the optimal CNN design for speaker identifi-
cation and clustering, as well as elaborated on how to apply
transfer learning, viz., transfer a network trained for speaker
identification to speaker clustering. However, as compared to
the proposed architecture, their CNN architecture didn’t sup-
port variable length input either.

3. Proposed Approach
The following subsections describe the proposed approach:

3.1. Model Architecture

Based on their recent success in a multitude of Computer Vision
tasks, and relatively simplistic design as compared to more re-
cent networks ([21], [22], [23]) we decided to base our CNNs on
the VGG ConvNet config A and B (VGG 11 and VGG 13) net-
works as proposed in [1], with modifications to accomodate to
the input features and provide support for variable length input.
Our proposed network utilizes Batch Normalization [24] after
every Conv-ReLU [25] pair. Inspired by [21], [22], we remove
the fully connected layers right after the CNN feature extractor.
The output features from the convolutional layers (final max-
pool layers) are collapsed over the feature map dimensions and
then averaged. This temporal averaging of CNN features yields
a low dimensional vector allowing efficient and dense aggrega-
tion of variable length input, thus enabling the network to acco-
modate variable length inputs effectively. This is followed by a
bottleneck layer of n dimensions (FC-ndims), on which center
loss is applied (3). This setup drastically reduces the number of
parameters of the network from 134M to 9.6M for the VGG 13
based network, much lower than the best performing network
from [3] with ≈67M parameters. Other variations of the net-
work with intermediate Fully connected layers were also tried,
but offered no improvements. To aid with overfitting, Dropout
[26] with a drop rate of 40% was applied before and after the
bottleneck layer.

Network A and Network B are based on VGG-config A and
VGG config B respectively (Table 1). ReLU and Batch Normal-
ization layers are not shown in the table for clarity. We use only
2-D Convolutional Layers with 3x3 kernels, with both stride and
padding equal to 1. Except the first Max Pooling layer, which
has a 3x3 kernel and stride of 2, all the Max Pooling layers have
a 2x2 kernel and stride of 2.

Our network design choices also lead to the following de-
sirable characteristics of the proposed architecture:

1. Parameter Efficiency: The network only utilizes small
3x3 kernels. As shown in [1], 3x3 convolutions are much
more parameter efficient as compared to 7x7 or 5x5 con-
volutions, with a 7x7 kernel requiring 81% more param-
eters.

2. Model Size: Most of the parameters of the original
VGG Config-A and Config-B networks reside in their
large fully connected layers. Latest CNN architectures

Table 1: Proposed CNN Architecture

Network A Network B
based on VGG config-A based on VGG config-B

input (1, 161, 301)
conv3-64 conv3-64

conv3-64
maxpool k = (3, 3), s = (2, 2)

conv3-128 conv3-128
conv3-128

maxpool
conv3-256 conv3-256
conv3-256 conv3-256

maxpool
conv3-512 conv3-512
conv3-512 conv3-512

maxpool
conv3-512 conv3-512
conv3-512 conv3-512

maxpool
Feature Averaging (batch, 512)

dropout
FC-ndims (batch, ndims)

dropout
FC-1,251
soft-max

have demonstrated that large FC layers are not a pre-
requisite for improved classification performance ([21],
[22], [23]). Therefore, we decided to remove these FC
layers. This reduced the number of parameters drasti-
cally, hence decreasing model disk space requirements
as well as speeding up inference.

3.2. Feature Extraction

MFCC features demonstrate degraded performance under noisy
conditions [16], [17], as well as by focusing only on the overall
spectral envelope of short frames, MFCCs may be lacking in
speaker-discriminating features (such as pitch information) [3].
Log-powered spectrograms, which have been popularized in re-
cent Speech works ([3], [11], [27]), do not possess the afore-
mentioned shortcomings of MFCCs, and therefore are used in-
stead. Following the feature extraction process in VoxCeleb[3],
all audio is first converted to single-channel, 16-bit streams at
a 16kHz sampling rate. Spectrograms are then generated in a
sliding window fashion using a Hamming window and mean
and variance normalization. However, unlike VoxCeleb, we use
a window width of 20ms, step size of 10ms and a 160 point fft.
This yields us a spectrogram of size 1x161x301 for a 3 second
audio clip, unlike VoxCeleb, which had a much larger spectro-
gram of size 1x512x300 for the same clip. This results in much
lower memory footprint and helps us train large CNNs on a sin-
gle Titan-Z GPU. Python’s popular LibROSAmodule was used
for feature extraction.

3.3. Joint Supervision Objective Loss function

In order to maximize the discriminative power of the CNN, we
propose to train the network under the joint supervision of Soft-
max Loss and Center Loss [2]. Center Loss was originally pro-
posed for Face Recognition tasks, where it performed remark-
ably on various benchmark datasets for face recognition such as
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Labelled Faces in the Wild (LFW), Youtube Faces (YTF) and
the MegaFace challenge. It was also demonstrated that the fea-
tures learned in this manner worked on par with those learned
using alternative Deep Metric Learning techniques, such as
Triplet Loss or Constrastive Loss. The intuition behind Cen-
ter Loss was that minimizing intra-class variations while keep-
ing features of different classes separable was key to learning
discriminative features. Center loss can be formulated as:

Lc =
1

2

n∑

i=1

‖bottlenecki − cyi‖22 (1)

where cyi ∈ Rd denotes the ythi class center of deep features
and bottlenecki denote the bottleneck features corresponding
to the ith instance.

Since we adopt a joint supervision of softmax and center
loss, the objective function can be formulated as:

L = Ls + λLc (2)

Where Ls stands for the Softmax Multiclass Classification Loss
and Lc stands for Center Loss. From (1) and (2):

L = −
n∑

i=1

log
e
WT

yi
xi+byi

n∑
j=1

e
WT

j xi+byj

+
λ

2

n∑

i=1

‖bottlenecki − cyi‖22

(3)
where the scalar λ is used for balancing the two loss func-

tions. In all our experiments, λ = 5 unless stated otherwise.

3.4. Implementation and Training Details

All our work was done using the PyTorch Deep Learning
Framework, and training was performed on an NVIDIA Titan-Z
GPU. Adam [28] optimizer was used for training the networks
with default hyper-parameter values. To reduce overfitting, we
augment the data by taking random 3-second crop in the time
domain, just like [3], along with random noise injection. Using
a fixed length input at training time reduces the memory foot-
print and computational requirements.

Identification vs Verification: The network architecture
and training methodology (such as the loss function) is identical
for both Identification and Verification tasks, unlike [3].

Testing: The network has an inherent capability of han-
dling variable length sequences, courtesy of feature averaging
prior to using fully connected layer(s).

4. Experiments
This section describes the experimental setup for both speaker
identification and verification tasks, and compares the perfor-
mance of the proposed approach with a number of methods
whose performance has already been benchmarked in [3].

4.1. Experimental Setup

Speaker Identification: For Speaker Identification the Person
Of Interests (POIs) for both training and testing remains the
same (all 1,251 distinct speakers, Table 2). Therefore the task
was treated as straight forward multi-class classification across
1,251 classes. The development/test split used was as provided
by [3]. For each POI, speech segments from one video is re-
served for test. For identification, top-1 and top-5 accuracies
are reported.

Speaker Verification: Following [3], all POIs whose name

Table 2: Speaker Identification data set statistics

Set #POIs # Vid.//POI #Utterances

Dev 1,251 17.0 139,124
Test 1,251 1.0 6,255

Table 3: Speaker Verification data set statistics

Set #POIs # Vid.//POI #Utterances

Dev 1,211 18.0 140,664
Test 40 17.4 4,715

starts with an ’E’ are reserved for testing, leaving out 1,211
POIs for training (Table 3) Therefore, networks for the Veri-
fication task were trained as 1,211-way multiclass classification
problem using the objective function as given in equation 2. At
test time, the bottleneck features, bottlenecka and bottleneckb
are calculated for the test pair (a, b) respectively, and cosine
distance is used to measure the similarity between bottlenecka
and bottleneckb vectors. We use Equal Error Rate (EER), a
popular performance metric for Speaker Verification, to quan-
tify the performance of the network on the test set.

4.2. Baselines

We compare our results with the following baselines, all of
which were already evaluated in [3].

GMM-UBM: The GMM-UBM system uses MFCCs of
dimension 13 as input. Cepstral mean and variance nor-
malisation (CMVN) was applied on the features. Following
the conventional GMM-UBM framework, a single speaker-
independent universal background model (UBM) of 1024
mixture components was trained for 10 iterations from the
training data.
I-vectors/PLDA: Gender independent i-vector extractors
[15] were trained on the VoxCeleb dataset to produce 400-
dimensional i-vectors. Probabilistic LDA (PLDA) [29] is then
used to reduce the dimension of the i-vectors to 200.
Inference: For identification, a one-vs-rest binary SVM
classifier was trained for each speaker m (m ∈ 1...K). All
feature inputs to the SVM were L2 normalised and a held
out validation set was used to determine the C parameter
(determines trade off between maximising the margin and
penalising training errors). Classification during test time was
done by choosing the speaker corresponding to the highest
SVM score. The PLDA scoring function [29] was used for
verification.
VoxCeleb’s Approach: VoxCeleb proposes a CNN archi-
tecture based on the VGG-M [30] CNN, with appropriate
modifications to adapt to the spectrogram input. Spectrograms
were generated using a sliding window of width 25ms, step
10ms and a 1024-point FFT, giving a spectrogram of size
512x300 for 3 second speech clip. Speaker Identification is
treated as a straightforward multi-class classification task,
whereas a Siamese network is trained with contrastive loss,
which requires considerable training efforts.

4.3. Results

Results are provided in Tables 4 and 5, respectively.
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Table 4: Speaker Identification Results on VoxCeleb

Accuracy Top-1% Top-5%

I-vectors + SVM 49.0 56.6
I-vectors + PLDA + SVM 60.8 75.6

CNN-fc-3s 72.4 87.4
CNN 80.5 92.1

Network A (ndims=128) 83.5 93.8
Network B (ndims=128) 84.6 94.1

Network A (ndims=128), Joint 88.3 96.8
Network B (ndims=128), Joint 89.5 97

Table 5: Speaker Verification Results on VoxCeleb

Metrics EER%

GMM + UBM 15.0
I-vectors + PLDA 8.8

CNN-1024D 10.2
CNN-256D Embedding 7.8

Network B (ndims=128) 4.9

Table 4 provides the results on the Speaker Identification
Task. The first four entries are baselines as evaluated in [3].
The proposed CNNs, Network A and Network B are trained
using Softmax Loss and then again under the joint supervision
of Softmax loss and Center Loss (marked Joint in the table) as
given by (Equation 3). Both CNN networks outperform the ex-
isting benchmarks by a large margin, with Network-B standing
out as the best performing network, for both softmax-only and
joint training.

For identification, the Network-B CNN architecture with
ndims = 128, trained using joint supervision performed the
best, achieving a top-1 classification accuracy of 89.5% over
1,251 POIs, which is an absolute improvement of 9% over the
previous best result of 80.5% (”CNN” entry, Table 4).

Table 5 provides the results on the Speaker Verification
Task. The first four entries are baselines as evaluated in [3].
Due to resource constraints, we only evaluate Network B, with
different values of bottleneck dimensions. All the networks for
verification were trained under the joint supervision of softmax
loss and center loss. Therefore, as compared to [3], where they
applied transfer learning by fine-tuning a classification model
using constrastive loss using complex hard negative mining, our
unified approach results in better performance with significantly
shorter training times, without the need for complex pair mining
techniques.

For verification, Network-B with ndims = 128 achieves
an EER of 4.9 %, an absolute improvement of ≈3.0% over the
previous best (CNN-256D Embedding, Table 5), a significant
improvement considering the 50% reduction in embedding size,
hence demonstrating the proposed training methodology’s abil-
ity to improve the network’s capability to learn discriminative
features.

5. Conclusions
In this paper, we propose an end-to-end Deep Learning sys-
tem using Convolutional Neural Networks (CNNs), trained un-
der the joint supervision of Softmax loss and Center loss to
obtain highly discriminative deep features suitable for both
Text-Independent Speaker Recognition and Speaker Verifica-

tion. Center loss was originally proposed for Face Recognition
tasks, where it established its capability to improve CNNs ca-
pability to learning discriminative features. Our results demon-
strate that networks trained using the proposed methodology
outperform the current baselines on both Speaker Identifica-
tion and Verification tasks, with much lesser number of parame-
ters, establishing the effectiveness of the proposed approach for
Text-independent Speaker Recognition as well.
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