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Abstract
We propose to learn acoustic word embeddings with temporal
context for query-by-example (QbE) speech search. The
temporal context includes the leading and trailing word
sequences of a word. We assume that there exist spoken word
pairs in the training database. We pad the word pairs with their
original temporal context to form fixed-length speech segment
pairs. We obtain the acoustic word embeddings through a
deep convolutional neural network (CNN) which is trained
on the speech segment pairs with a triplet loss. By shifting
a fixed-length analysis window through the search content,
we obtain a running sequence of embeddings. In this way,
searching for the spoken query is equivalent to the matching
of acoustic word embeddings. The experiments show that our
proposed acoustic word embeddings learned with temporal
context are effective in QbE speech search. They outperform
the state-of-the-art frame-level feature representations and
reduce run-time computation since no dynamic time warping is
required in QbE speech search. We also find that it is important
to have sufficient speech segment pairs to train the deep CNN
for effective acoustic word embeddings.
Index Terms: acoustic word embeddings, word pairs, temporal
context, triplet loss, query-by-example spoken term detection

1. Introduction
Query-by-example (QbE) speech search or spoken term
detection is the task of searching for the occurrence of a
spoken query in search content [1, 2]. A typical approach
to this task relies on dynamic time warping (DTW) to
perform acoustic pattern matching over frame-level feature
representations. These feature representations can be learned
in unsupervised [3, 4, 5, 6] or supervised [7, 8, 9] manner. In
supervised learning, classifiers are usually trained using labeled
data from non-target languages to derive features.

In this paper, we propose to learn acoustic word
embeddings with temporal context for QbE speech search.
We assume that there exist spoken word pairs in the training
database in the target language. Learning frame-level
feature representations using word pairs has been shown
successful [10]. However, it relies on computationally
expensive DTW during the search. This prompts us to study
acoustic word embeddings that encode speech at segment or
word level. In this way, we can simplify the QbE speech search
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test by measuring the vector distance (e. g., cosine distance)
over the acoustic word embeddings between the spoken query
and the search content.

Acoustic word embeddings project speech segments into
fixed-dimensional vector space where the distance between
same speech content is small while the distance between
different speech content is large. They have been shown
successful in automatic speech recognition [11] and isolated
word discrimination [12, 13, 14]. However, as the word
boundary is not available in search content, QbE speech
search is therefore considered more difficult than isolated
word discrimination. To overcome this problem, studies have
shown [15, 16] that approximate nearest neighbor search over
the acoustic word embeddings is a reasonable solution.

We propose the idea to include the leading and trailing word
sequences as the temporal context of a word. The word pairs are
padded with their original temporal context to form fixed-length
speech segment pairs. We train a deep convolutional neural
network (CNN) with a triplet loss using the speech segment
pairs to learn acoustic word embeddings. During QbE speech
search, we propose to shift a fixed-length analysis window
to obtain a sequence of embeddings on search content, then
we search over the embeddings instead of frame-level feature
representations to find the matching spoken query.

The novel contribution of this paper is that, for the first
time, we incorporate the temporal context to improve the
acoustic word embeddings for QbE speech search. With the
temporal context, we learn the possible neighboring speech
sequences around the words, which reduces the mismatch
between the learning of embeddings and its application on the
search content. Our proposed technique outperforms the state-
of-the-art frame-level feature representations [10] and reduces
the run-time computation since no DTW is required in QbE
speech search. As learning acoustic word embeddings requires
a larger number of word pairs than learning frame-level feature
representations [17], we use more word pairs discovered from
the Switchboard speech corpus and we test the effect of number
of speech segment pairs in learning acoustic word embeddings
for QbE speech search.

2. QbE speech search using acoustic word
embeddings

2.1. Learning embeddings with temporal context

Acoustic word embeddings which are extracted from a
typical feed-forward deep neural network usually require
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Figure 1: The diagram of learning acoustic word embeddings
with temporal context padding.

the input with fixed-length. Zero padding has been shown
successful in learning acoustic word embeddings for isolated
word discrimination [13, 17]. With zero padding, all speech
segments are padded with zeros on both side of each segment to
the same length. In the case of QbE speech search, because the
word boundary is not available, it is hard to segment the search
content into isolated words. Therefore, we propose to shift a
fixed-length analysis window to segment the search content
into many fixed-length speech segments. As these speech
segments may contain sub-words, one or more whole words,
there exists a mismatch between the learning of embeddings
and the use of embeddings at run-time. To mitigate such
mismatch, we propose to use the temporal context of a word to
learn acoustic word embeddings in QbE speech search.

The temporal context refers to the original leading and
trailing word sequences on both sides of a word. The way we
incorporate the temporal context is also called temporal context
padding. As illustrated in Fig. 1, given a word instance xaw, we
add its original previous word sequence as xaw+ in front and
its subsequent word sequence as xaw− behind with the same
number of frames. Notice that the temporal context may contain
a partial word (e. g., “wi-” in “with”), a whole word (e. g.,
“here”), or multiple words (e. g., “a real”). We assume that word
pairs (e. g., (xa

w, xp
w)) identified by humans are available.

The word pairs are padded with their original temporal context
to form speech segment pairs (e. g., (xa, xp)). In this way, the
speech segment xa contains the same word (e. g., “problem”) as
the speech segment xp, while the speech segment xn contains a
different word (e. g., “nowadays”).

We employ deep neural networks with a triplet loss to
learn acoustic word embeddings. The deep neural networks
take the triplets as input. Each triplet consists of 3 examples
(xp, xa, xn). We use a pair of speech segments as an anchor
example xa and a positive example xp, and we randomly
sample another speech segment as a negative example xn.
Learning acoustic word embeddings is shown in Fig 1.
Each example is represented by multi-lingual bottleneck
features (BNFs), which capture rich information of phonetic
discrimination from other language resources. We aim to
learn a function f which maps an example x to the fixed-
dimensional embedding f(x). The deep CNN, which has
been shown successful to learn this function in isolated word
discrimination [13, 17], is used here for learning embeddings
with temporal context.

Detection based on cosine distance

Acoustic word 
embeddings

...Shifting

CNN

Spoken query Search Content

... ...

Zero Zero

...

f(x)

x
y1 yt yT

f(y1) f(yt) f(yT)

BNFs BNFs

Figure 2: QbE speech search using acoustic word embeddings.

The triplet loss was originally proposed in [18] for learning
face embeddings from image. As for learning acoustic word
embeddings from speech, we aim to increase the similarity
between the embeddings (f(xp), f(xa)), while decreasing the
similarity between the embeddings (f(xn), f(xa)). Our triplet
loss is defined as

Loss(xp, xa, xn) = max{0, δ + d+ − d−} (1)

d+ =
1− f(xp)·f(xa)

‖f(xp)‖2‖f(xa)‖2
2

(2)

d− =
1− f(xn)·f(xa)

‖f(xn)‖2‖f(xa)‖2
2

(3)

where δ is a margin constraint that regularizes the gap between
the cosine distance of same-word embeddings d+ and the
cosine distance of different-word embeddings d−. We set the
margin to 0.15 as in [13, 17]. The acoustic word embeddings
f(x) are extracted from the last layer of the trained deep CNN.

2.2. Shifting analysis window on search context

Fig. 2 illustrates the process of our proposed QbE speech
search system using acoustic word embeddings. As an indexing
process, we propose to apply a fixed-length analysis window
on the search content y by shifting along the time axis. The
speech segment in the analysis window is then converted into an
acoustic word embedding by the trained deep CNN. As a result,
the search content is indexed by a sequence of acoustic word
embeddings as (f(y1), ..., f(yi), ..., f(yT )). As no context
information is available for the spoken query x, we pad zeros
to both sides of x as the input to the trained deep CNN to obtain
the embedding f(x). In this way, the vector distance, instead
of DTW distance, can be directly used over the embeddings
between the spoken query and the search content.

Note that the mismatch between the embeddings in the
spoken query and the search content still exist. To further
mitigate the mismatch, we also considered different ways to
learn the embeddings, including zero padding, and combining
context padding and zero padding (using the two padding
methods in a speech segment triplet or using different padding
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Figure 3: Comparative study between zero padding and context padding in acoustic word embeddings for QbE speech search. Multi-
lingual BNFs and Set 2 are used.

methods in different triplets). However these ways do not
further improve the search accuracy in our preliminary test.

The size of the fixed-length analysis window is determined
by the average length of all speech segments used in learning
acoustic word embeddings. We set the window shift size to 5
frames as we find that a shifting smaller than 5 frames doesn’t
improve. A minimum distance cost can be calculated by:

Cost(x, y) = min(1− f(x) · f(yi)
‖f(x)‖2‖f(yi)‖2

), i = 1, ..., T (4)

Given a spoken query, all the minimum distance costs in search
content are returned by the QbE speech search system.

3. Experiments
3.1. Experimental setup

To evaluate the effectiveness of our proposed acoustic word
embeddings, we conducted the QbE speech search on the
English Switchboard corpus. From our previous work [17], we
observed that learning word-level embeddings should require a
larger number of word pairs than learning frame-level feature
representations. Thus we extended two training sets:

• Set 1: It has the same vocabulary size (1,687) as in [17],
but it consists of 37k word instances (about 6.6 hours of
speech) that make up 500k speech segment pairs with
temporal context padding.

• Set 2: The vocabulary size is increased to 5,476, and the
dataset consists of 53k word instances (about 9.5 hours
of speech) that also make up 500k speech segment pairs
with temporal context padding.

We used the same development set as in [19, 20, 13, 17, 10] for
learning acoustic word embeddings. As for QbE speech search
tests, we followed the data setting in [10]. We used 346 spoken
queries as the keyword set and 100 utterances as the test set.

We included the leading and trailing word sequences as
the temporal context of a word to form a speech segment
with the length of 200 frames (2 seconds). All the speech
segments were represented by 40-dimensional multi-lingual
BNFs as in [10]. The BNF extractor was trained using Mandarin
Chinese and Spanish telephone speech. We trained a deep CNN
with a triplet loss using speech segment pairs to learn acoustic

word embeddings. The deep CNN model consists of two
convolutional and max pooling layers, a fully-connected ReLU
layer with 2,048 hidden units and a fully-connected linear layer
with 1,024 hidden units. We implemented the model using the
Theano toolkit [21], and we trained the model using stochastic
gradient descent with the mini-batch size of 1,024. All the
neural weights were initialized randomly. An ADADELTA [22]
optimizer was used with the momentum of ρ = 0.9 and the
precision of ε = 10−6. Training would be terminated if the loss
on the development set was not improved over 20 epochs.

As in [3, 6, 10], three different evaluation metrics are used
for QbE speech search: 1) mean average precision (MAP),
which is the mean of average precision for each query on search
content. 2) Precision of the top N utterances in the test set
(P@N), where N is the number of target utterances involving
the query term. 3) Precision of the top 5 utterances in the test
set (P@5).

3.2. Temporal context in acoustic word embeddings

To validate the efficiency of our proposed acoustic word
embeddings learned with temporal context for QbE speech
search, we compared context padding with zero padding in
learning acoustic word embeddings based on multi-lingual
BNFs. From Fig. 3 we can find that context padding
outperforms zero padding when more than 10k speech
segment pairs are available in Set 2 (about 3%-11% relative
improvement in three evaluation metrics). Similar results
are also obtained in Set 1 with a smaller vocabulary. The
experiment results suggest that the temporal context padding
learns the possible neighboring speech sequences around the
words, which reduces the mismatch between the learning of
embeddings and the use of embeddings on the search content
for QbE speech search.

3.3. Comparison of different feature representations

Table 1 lists the performance of QbE speech search using
different feature representations, including multi-lingual BNFs,
the state-of-the-art frame-level feature representations in [10]
and our proposed acoustic word embeddings learned with
temporal context. These feature representations are trained
using 500k speech segment pairs in Set 2. The QbE speech
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Table 1: Comparison of different feature representations for QbE speech search. 500k speech segment pairs in Set 2 are used.

Representation
Input features Use Run-time computation MAP P@N P@5

of paired examples DTW? (seconds)

Multi-lingual BNFs N/A Yes 4,752 0.400 0.365 0.485
Frame-level feature representations [10] Multi-lingual BNFs Yes 9,506 0.485 0.446 0.566
Acoustic word embeddings (proposed) Multi-lingual BNFs No 1,017 0.502 0.462 0.567
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Figure 4: Effect of number of speech segment pairs in learning speech representations for QbE speech search.

search based on these feature representations are tested using
a single thread on a workstation equipped with an Intel
Xeon E5-2680 @ 2.7GHz CPU. The results show that the
acoustic word embeddings outperform the frame-level feature
representations (about 4% relative improvement in both MAP
and P@N), and they reduce run-time computation since no
dynamic time warping is required in QbE speech search. This
suggests that learning acoustic word embeddings with temporal
context is effective in terms of both accuracy and computational
efficiency. In addition, we also find that the acoustic word
embeddings based on multi-lingual BNFs outperform those
based on spectral features (e. g., mel-frequency cepstral
coefficients). This demonstrates that multilingual knowledge
from resource-rich languages is helpful to learn acoustic word
embeddings for QbE speech search.

3.4. Effect of number of speech segment pairs

We also investigated how the number of speech segment pairs
in learning speech representations would affect the performance
for QbE speech search. We randomly selected subsets of
N=[M , 10k, 100k, 250k, 500k] speech segment pairs, where
M represents the minimum speech segment pairs in Set 1 and
Set 2 respectively. The evaluation results are plotted in Fig. 4.

We observe that acoustic word embeddings derived from
Set 1 and Set 2 consistently improve the search results as
the number of speech segment pairs increases. When we
have more than 10k speech segment pairs, the acoustic word
embeddings of Set 2 consistently outperform those of Set
1. This suggests that we can train a better deep CNN for
acoustic word embeddings using a larger vocabulary, and
it is important to have sufficient speech segment pairs to
learn acoustic word embeddings for QbE speech search. In
addition, we also reported the results of frame-level feature
representations trained in both datasets. From Fig. 4 we

can find that our proposed acoustic word embeddings can
consistently give higher search accuracies than the frame-level
feature representations when more than 100k speech segment
pairs are available.

4. Conclusion
We have proposed a novel approach to learn convolutional
neural acoustic word embeddings trained with temporal context
padding for QbE speech search. The temporal context padding
reduces the mismatch between the learning of embeddings
and the use of embeddings on search content. Our proposed
acoustic word embeddings can outperform the state-of-the-
art frame-level feature representations and reduce run-time
computation since no dynamic time warping is required in
QbE speech search. Sufficient speech segment pairs with
sufficient vocabulary coverage are important to learn acoustic
word embeddings for QbE speech search. In the future, the
discovery and selection of speech segment pairs will be worth
exploring, and we will investigate recurrent neural networks,
which are capable of modeling sequences, to obtain better
acoustic word embeddings for this task.
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