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Abstract
Methods for synthesizing speech sounds from the motion of ar-
ticulatory organs can be used to produce substitute speech for
people who have undergone laryngectomy. To achieve this goal,
feature parameters representing the spectral envelope of speech,
directly related to the acoustic characteristics of the vocal tract,
has been estimated from articulatory movements. Within this
framework, speech can be synthesized by driving the filter ob-
tained from a spectral envelope with noise signals. In the cur-
rent study, we examined an alternative method that generates
speech sounds directly from the motion pattern of articulatory
organs based on the implicit relationships between articulatory
movements and the source signal of speech. These implicit rela-
tionships were estimated by considering that articulatory move-
ments are involved in phonological representations of speech
that are also related to sound source information such as the
temporal pattern of pitch and voiced/unvoiced flag. We devel-
oped a method for simultaneously estimating the spectral en-
velope and sound source parameters from articulatory data ob-
tained with an electromagnetic articulography (EMA) sensor.
Furthermore, objective evaluation of estimated speech parame-
ters and subjective evaluation of the word error rate were per-
formed to examine the effectiveness of our method.
Index Terms: Articulatory movement, EMA, Vocal-tract spec-
trum, Deep learning, Articulatory-to-acoustic mapping

1. Introduction
A range of methods of articulatory-to-acoustic mapping have
been developed to estimate the acoustic parameters of speech
from the movement patterns of articulatory organs [1–6]. Such
methods are beneficial for acquired speech-impaired people,
providing a way of producing substitute speech that can be gen-
erated directly from articulatory movements, without linguistic
content. Articulatory movements have also been used to con-
struct a brain-machine interface [4, 5].

Electromagnetic articulography (EMA), a well-known
method of observing articulatory movements, can be used to
track the position of multiple small marker coils attached to
the articulatory organs such as the jaw, upper and lower lips,
and tongue. The articulatory data recorded by EMA have a
higher temporal resolution than other methods such as mag-
netic resonance imaging (MRI) or ultrasonic scanners [7]. Fur-
thermore, EMA does not require complex post-processing pro-
cesses to obtain movement data. The obtained articulatory data
have been used to study articulatory-based speech synthesis,
statistical voice quality conversion, and utterance learning of a
foreign language, and have been used as additional feature pa-

rameters for speech recognition. Previous studies have demon-
strated the effectiveness of using articulatory data for a variety
of speech signal processing techniques [8]. Articulatory move-
ments are particularly useful because they are less affected by
pitch and voiced-unvoiced switching. In addition, articulatory
movements are superior to spectral feature parameters in rep-
resenting the articulatory state, even for non-stationary sounds
such as plosive consonants.

However, it is difficult to recover the whole vocal-tract
shape from measured EMA data. To overcome this issue, previ-
ous studies have used a parallel speech corpus in which speech
signals and EMA data are simultaneously recorded to learn the
statistical relationships between the articulatory and acoustic
parameters of speech. A codebook storing pairs of articula-
tory and acoustic parameters can then be used to estimate the
vocal-tract spectrum from the input articulatory data by select-
ing the neighboring pair samples [1]. However, in this codebook
search method, the amount of calculation required for select-
ing the neighboring data samples increases when the size of the
codebook increases. In other studies, articulatory-to-acoustic
mapping has been achieved using Gaussian mixture models [2],
feed-forward neural networks [3], deep neural networks [4, 5],
and uni-directional long short-term memory (LSTM) [6].

In these previous studies, parameters representing the spec-
tral envelope of speech (such as the mel-cepstrum parameter)
have often been used as the acoustic features. This is because
the vocal tract acts as a filter in the production of human speech
and determines the spectral characteristics of speech. On the
other hand, the vocal tract is deeply involved in the genera-
tion of the sound source for some consonants including plosives
and fricatives. In addition, the acoustic characteristics of the
vocal tract are responsible for the phonological representation
of speech, and sound source information, such as the temporal
pattern of pitch and voiced/unvoiced flag, is relevant to phone-
mic information. Therefore, we can expect that there might be
implicit and indirect relationships between articulatory move-
ments and parameters regarding the sound source of speech.
Estimation of sound source information has been examined pre-
viously [3, 6], but the EMA datasets used in these studies were
relatively small, and recording was as short as 30 minutes or
less.

In the current study, we constructed an articulatory-to-
speech conversion model that estimates not only the feature pa-
rameters representing the spectral envelope but also the parame-
ters regarding the sound source of speech from articulatory data
obtained with EMA. Our conversion model was constructed by
training a bi-directional recurrent neural network (BRNN) with
the mngu0 EMA dataset [9], which has a dataset of more than 1
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hour. In addition, to determine the effectiveness of our model,
we performed an objective evaluation of speech parameters es-
timated with the model, and a subjective evaluation examining
the word error rate of synthetic speech.

2. Method
2.1. Recurrent Neural Networks

2.1.1. Bi-directional recurrent neural networks

We used a BRNN [10] method to consider forward and back-
ward time series simultaneously by combining two recurrent
structures. When time series data X = (x1, x2, ..., xT ) are
given, X−1 = (xT , ..., x2, x1) represents the backward se-
ries. Let us denote two recurrent structures as Rf and Rb. The
BRNN can then be written as follows:

Hf = (hf1, hf2, ..., hfT ) = Rf (X) (1)
Hb−1 = (hbT , ..., hb2, hb1) = Rb(X−1) (2)
and

H =

[
Hf

Hb

]
=

([
hf1

hb1

]
,

[
hf2

hb2

]
, ...

[
hfT

hbT

])
. (3)

When time series data X are input into the recurrent structure
Rf , we obtain the output Hf , which takes into account the
data ordered in the forward direction. We also obtain the out-
put Hb−1 by entering the time series data X−1 ordered in the
backward direction to the recurrent structure Rb. The total out-
put H can be obtained by concatenating these two outputs to
simultaneously consider the forward and backward time series.
The time series data of all time samples are required for the
inference due to the non-causal structure of a BRNN.

2.1.2. Long short-term memory

LSTM [11] is the most representative gated recurrent structure.
This gated recurrent structure was developed to solve the prob-
lem of conventional RNN methods, which exhibit inferior per-
formance when the length of an input data series is very long.
LSTM uses three gates called the input gate i, forget gate f ,
and output gate o. It also uses a hidden state vector called a cell
c that can hold long-term information about input data series.
LSTM performs the following calculations:
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ct = it ⊙ ht + ft ⊙ ct−1 (5)
and

ht = ot ⊙ tanh(ct). (6)

ht is the same hidden state vector used in the ordinal RNN.
Eq. (5) shows that ht is adjusted by the input gate it to provide
the updating value of the cell c. In addition, the value of the cell
for the past time instant decreases by using the forget gate ft. In
other words, the value of the cell is updated by balancing short-
and long-term information by using the input and forget gates.
Finally, Eq. (6) shows that the output of LSTM is obtained by
adjusting the updated cell value using the output gate ot.

2.1.3. Layer normalization

It is known that normalizing the hidden state vector has a good
effect on the training of networks [12]. As a method to normal-
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Figure 1: Diagram of the proposed articulatory-to-speech
conversion system, where ”ap” means aperiodicity, ”bap”
means five-band averaged aperiodicity, and ”v/uv” means
voiced/unvoiced flag.

ize the value of hidden state vector, layer normalization [13] is
particularly effective for constructing RNN, since the length of
input data series is variable and it is not possible to use a large
batch size. Regardless of the number of mini-batches, layer nor-
malization has the same effect.

2.1.4. Incremental method

The incremental method [14] is a method for training deep net-
works well. In this method, training of a network composed of
input and output layers is first performed. When convergence
is obtained, a hidden layer is added to the network, next to the
input layer. Training of the new network and the addition of
a hidden layer is repeated further until the desired number of
hidden layers has been inserted. Note that, when a hidden layer
is added, the output layer is reinitialized. Also, after the layer
addition, training of the whole network should be performed, in-
cluding the network layers for which the training is completed.
This method is effective for training the hidden layers of a deep
network.

2.2. Speech synthesis from articulatory movements

Figure 1 shows a diagram of the proposed speech synthesis
method from observed articulatory movements. At the bottom
of the figure,ʠEMA-to-speech conversion RNNʡis a structure
incorporating a bi-directional LSTM, which can consider the
forward and backward time series of input EMA data simulta-
neously. When a sequence of EMA data is input, this RNN out-
puts a combined vector of the static and delta features of speech
parameters. Speech feature parameters that have a smooth tem-
poral trajectory can be formed from static and delta features us-
ing the maximum likelihood parameter generation (MLPG) al-
gorithm [15]. These concatenated parameters are then separated
and processed to drive a speech synthesizer called WORLD [16]
(D4C Edition [17]). Finally, WORLD generates a speech sig-
nal as the output of the whole system. A cascade method has
been proposed [6] in which parameter estimation is repeatedly
performed to estimate other parameters, but in the current study,
all the speech features were estimated through a single network.
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label location
UL Upper lip
LL Lower lip
LI Lower incisor
T1 Tongue tip
T2 Tongue body
T3 Tongue dorsum

Figure 2: Fixed positions of the receiving coils.

RNN is trained to minimize the mean squared error with respect
to the parameter vector concatenating the speech features. In
our method, the conversion model is built with a single network,
and can greatly reduce the labor of training and complicated ad
hoc tuning of the hyper-parameters.

3. Experiment
3.1. Experimental condition

3.1.1. Articulatory-speech data pairs

In our speech synthesis method,ʠ EMA-to-speech conversion
RNNʡwas trained from a set of articulatory-speech data pairs.
We used the mngu0 [9] dataset as an articulatory-speech paral-
lel data corpus. This corpus was constructed by simultaneously
recording speech and articulatory motion with a microphone
and magnetic sensor (EMA) when a male English-speaker pro-
nounced 1336 sentences. The position of the receiving coils
attached to the articulatory organs is shown in Figure 2. The
sampling frequency of EMA data was 200 Hz and that of audio
signals was 16 kHz.

The articulatory data of each marker coil were represented
by the two-dimensional position measured on the midsagittal
plane of the speaker. We found that NaN data were included
in EMA data as a result of position estimation error during
data acquisition. These data were replaced with relevant val-
ues by interpolating the adjacent position data of each receiver
coil over time. As the acoustic feature parameters, we used
0 to 40th-order mel-cepstrum parameters, continuous log F0
[18], voiced/unvoiced flag, and five-band averaged aperiodic-
ity [19, 20] calculated using WORLD [16]. For mel-cepstrum
parameters, we performed trajectory smoothing [21] with a low
pass filter of 50 Hz. Here, the temporal adjustment of EMA
data and the acoustic feature parameters were obtained so that
the shift width of the analysis frame of WORLD was in accord
with the sampling period of EMA data. In addition to the static
features determined for each frame, their changes over time (dy-
namic features) were also taken into consideration as delta fea-
tures for both articulatory and speech feature parameters. Each
parameter was then normalized so that the mean was zero and
the variance was one.

The articulatory-acoustic data pairs were divided into three
subsets, and each subset was used for the training, validation of
the training process, and open test of trained RNN, respectively.
In the mngu0 dataset, 1336 sentences were already separated
into these three subsets, 1208 for the training, 63 for the vali-
dation, and 65 for the open test. The number of data pairs was
720873 for the training, 37851 for the validation, and 39896 for
the open test.

3.1.2. Training of RNN

Training of RNN was performed using articulatory-acoustic
data pairs. RNN had a structure of three fully-connected lay-
ers, a layer normalization process, a sigmoid block with 128
units, two layers of bi-directional LSTM with 256 units, and an
output fully-connected layer.

First, training was performed using an incremental method
[14] so that the mean squared error with respect to the es-
timated static and delta speech feature parameters was mini-
mized. Minimum generation error (MGE) training [22] was
then performed. In this training, static features of speech pa-
rameters were generated from both the static features and dy-
namic features. The mean squared error was then minimized
with respect to the generated static features. At each stage of
the training, we used 5.0 gradient clipping and Grave ʟs RM-
Sprop [23] as an optimization method. While the training was
repeated, the error for the validation dataset was calculated for
each epoch, and the training was terminated when the minimum
error was obtained.

4. Results and Discussion

4.1. Result of objective evaluation

The estimation error of the speech feature parameters is shown
in Table 1 to compare the estimation accuracy of our method
with that reported in previous studies. Here, the error for the
1st to 40th-order mel-cepstrum parameters (mcep) were evalu-
ated in terms of mel-cepstrum distortion [dB]. The five-band
averaged aperiodicity (bap), 0th-order mel-cepstrum parame-
ter (power), and the fundamental frequency (F0) were evalu-
ated by calculating the root mean squared error (RMSE). The
voiced/unvoiced flag (v/uv) was evaluated by taking the error
rate [%]. The table shows data from a previous study using the
GMM-MMSE method [2], trained with a male speaker dataset
included in Mocha-timit database [24] (the data set size was ap-
proximately 20 minutes). In contrast, cas DNNs [6] was trained
using a subset of the mngu0 database (the dataset size was es-
timated as approximately 30 minutes). For cas DNNs, the es-
timation error of the mel-cepstrum parameters (mcep) was not
shown, because the calculation procedure of the parameter val-
ues seemed to be different from the standard procedure. The
results showed that the estimation error of every speech param-
eter was smaller in our method than in previous methods. These
findings indicate that our proposed method is capable of pro-
ducing speech signals from articulatory movements with better
accuracy than pre-existing methods.

Figure 3 shows the estimated and target values of F0 for
the sentenceʠYasser Arafat understands thisʡincluded in the
test subset of mngu0 database. The results revealed that the
voiced/unvoiced flag and the fundamental frequency appear to
be well estimated for this example.

The results of the objective evaluation revealed that the pro-
posed method was able to estimate the speech features with bet-
ter accuracy than previous methods. There are two possible rea-
sons for this result: performance may have been enhanced by
improvement of the estimation method itself, and/or the large
datasets used to train the model. To determine the true cause of
the improved accuracy, more detailed comparison of different
estimation methods using a unified articulatory-speech dataset
is required in future studies.
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Table 1: Estimated error of each feature parameter.

mcep
[dB]

bap power v/uv
[%]

F0
[Hz]

proposed 4.801 0.1260 0.4128 10.32 10.49
GMM-MMSE
[2]

5.59 - - - -

cas DNNs [6] - - 0.560 20.29 22.76

Figure 3: The estimated and the target values of F0 for the sen-
tence ”Yasser Arafat understands this” in the mngu0 test set.

4.2. Subjective evaluation

4.2.1. Experiment participant

Next, to perform a subjective evaluation of synthesized speech,
we conducted a transcription test of speech samples generated
from EMA data through Amazon Mechanical Turk (mturk).
Analysis-synthesis version of each test sample (that can be re-
garded as the target quantity in RNN training) was also in-
cluded. A sample of 10 participants took part in the test. All
participants used mturk from the United States or the UK, and
all declared that their native language was English. The follow-
ing instructions were given to participants before they listened
to the speech samples: (1) The use of earphones or headphones
was recommended, (2) Speech samples were in English, and
were grammatically correct, and (3) The quality of speech sam-
ples was degraded due to noise or a distortion.

4.2.2. Stimuli

Each stimulus was a speech sample synthesized from the speech
feature parameters estimated from EMA data or synthesized
speech where parameter values were obtained by analyzing the
original speech signal (i.e., the target in RNN training). We used
65 sentences included in the test subset of the mngu0 database.
Each participant transcribed these sentences once in a random
order, which was synthesized from either estimated parameters
or analyzed parameters. The number of the estimated version
and that of the analyzed version was almost identical (i.e., 33
for estimated and 32 for analyzed, or vice versa, depending on
the participant). As a result, the number of total speech samples
was 130, and each sample was respectively transcribed by five
participants. During the transcription, the participant listened to
each sample as many times as they wanted.

4.2.3. Results

Figure 4 Shows the mean word error rate (WER) over all par-
ticipants. The WER of speech sample estimated from EMA
was 30.1% on average and the WER of the target value was
14.3%. In addition, the average of the mean WER difference
between the target and the estimated value for each participant
was 15.1%.

In the subjective evaluation, the word error rate (WER) of
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Figure 4: Word error rate of transcription. Error bars show the
standard deviation of the error rate over all participants.

the method using a neural network [3], which was trained with
a female speaker dataset included in Mocha-timit database [24]
(dataset size of approximately 20 minutes), was approximately
35% to 40%, indicating that our method was capable of pro-
ducing more acceptable speech signals. In our method, the dif-
ference in WER of synthesized speech between estimated pa-
rameter values and analyzed parameter values was also smaller.
One possible reason for the low WER for the analyzed param-
eter values is that many proper nouns, such as the name of a
person, were included in the speech samples. In addition, WER
varied widely among participants. This may have been because
the subjective evaluation was performed using mturk, and the
experimental conditions, such as the type of headphones and
environmental noise, were different for each participant.

5. Conclusion
The current study tested a new method for estimating feature
quantities of speech, including the spectral envelope and sound
source information, based on the movement trajectory of the
articulatory organs. The results revealed that our proposed
method was capable of producing speech from articulatory in-
formation. Using a set of articulatory-speech parallel data (i.e.,
the mngu0 dataset), a recurrent neural network was trained to
realize the articulatory-to-speech conversion. The experimental
results indicated that the proposed method can estimate speech
features better than previous methods. The results of a sub-
jective evaluation revealed that the WER was 30.1%. The in-
telligibility of synthesized speech was also better than that of
pre-existing methods.

We plan to extend this research to compare differ-
ent articulatory-to-speech conversion methods with a unified
dataset in future. In addition, we plan to conduct a subjec-
tive evaluation in terms of the naturalness and speaker indi-
viduality of synthesized speech. Finally, another articulatory-
to-speech conversion model will be built without using the
WORLD vocoder, for Japanese.

6. Acknowledgements
This work was supported by JSPS KAKENHI Grant Number
JP16K00242. We thank Benjamin Knight, MSc., from Edanz
Group (www.edanzediting.com/ac) for editing a draft of this
manuscript.

7. References
[1] T. Kaburagi and M. Honda, “Determination of the vocal tract

spectrum from the articulatory movements based on the search
of an articulatory-acoustic database,” in Proc. ICSLP, Dec. 1998,
pp. 433–436.

2502



[2] T. Toda, A. W. Black, and K. Tokuda, “Statistical map-
ping between articulatory movements and acoustic spec-
trum using a gaussian mixture model,” Speech Commu-
nication, vol. 50, no. 3, pp. 215 – 227, 2008. [On-
line]. Available: http://www.sciencedirect.com/science/article/
pii/S0167639307001495

[3] C. Kello and D. Plaut, “A neural network model of the
articulatory-acoustic forward mapping trained on recordings of
articulatory parameters,” The Journal of the Acoustical Society of
America, vol. 116, pp. 2354–64, 11 2004.

[4] F. Bocquelet, T. Hueber, L. Girin, P. Badin, and B. Yvert, “Ro-
bust articulatory speech synthesis using deep neural networks for
bci applications,” in Proc. INTERSPEECH, Jan. 2014, pp. 2288–
2292.

[5] F. Bocquelet, T. Hueber, L. Girin, C. Savariaux, and B. Yvert,
“Real-time control of a DNN-based articulatory synthesizer for
silent speech conversion: a pilot study,” in Proc. INTERSPEECH,
Sep. 2015.

[6] Z.-C. Liu, Z.-H. Ling, and L.-R. Dai, “Articulatory-to-acoustic
conversion with cascaded prediction of spectral and excitation
features using neural networks,” in Proc. INTERSPEECH, Sep.
2016, pp. 1502–1506.

[7] T. Kaburagi, K. Wakamiya, and M. Honda, “Three-
dimensional electromagnetic articulography: A measurement
principle,” The Journal of the Acoustical Society of America,
vol. 118, no. 1, pp. 428–443, 2005. [Online]. Available:
https://doi.org/10.1121/1.1928707

[8] K. Richmond, Z. Ling, and J. Yamagishi, “The use of articulatory
movement data in speech synthesis applications: An overviewʕ
application of articulatory movements using machine learning al-
gorithms,” Acoustical Science and Technology, vol. 36, no. 6, pp.
467–477, Nov. 2015.

[9] K. Richmond, P. Hoole, and S. King, “Announcing the electro-
magnetic articulography (day 1) subset of the mngu0 articulatory
corpus,” in Proc. INTERSPEECH, Jan. 2011, pp. 1505–1508.

[10] M. Schuster and K. Paliwal, “Bidirectional recurrent neural
networks,” Trans. Sig. Proc., vol. 45, no. 11, pp. 2673–2681, Nov.
1997. [Online]. Available: http://dx.doi.org/10.1109/78.650093

[11] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [On-
line]. Available: http://dx.doi.org/10.1162/neco.1997.9.8.1735

[12] S. Ioffe and C. Szegedy, “Batch normalization: Acceler-
ating deep network training by reducing internal covariate
shift,” CoRR, p. abs/1502.03167, 2015. [Online]. Available:
http://arxiv.org/abs/1502.03167

[13] L. J. Ba, R. Kiros, and G. E. Hinton, “Layer normaliza-
tion,” CoRR, p. abs/1607.06450, 2016. [Online]. Available:
http://arxiv.org/abs//607.06450

[14] M. Hermans and B. Schrauwen, “Training and analysing deep
recurrent neural networks,” in Advances in Neural Information
Processing Systems 26. Curran Associates, Inc., 2013, pp.
190–198. [Online]. Available: http://papers.nips.cc/paper/5166-
training-and-analysing-deep-recurrent-neural-networks.pdf

[15] K. Tokuda, T. Kobayashi, T. Masuko, T. Kobayashi, and T. Ki-
tamura, “Speech parameter generation algorithms for hmm-based
speech synthesis,” in Proc. IEEE ICASSP, 2000, pp. 1315–1318.

[16] M. Morise, F. Yokomori, and K. Ozawa, “World: A vocoder-
based high-quality speech synthesis system for real-time appli-
cations,” IEICE Transactions on Information and Systems, vol.
E99.D, no. 7, pp. 1877–1884, 2016.

[17] M. Morise, “D4C, a band-aperiodicity estimator for high-quality
speech synthesis,” Speech Communication, vol. 84, pp. 57 – 65,
2016. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0167639316300413

[18] K. Yu and S. Young, “Continuous F0 modeling for HMM based
statistical parametric speech synthesis,” IEEE Transactions on Au-
dio, Speech, and Language Processing, vol. 19, no. 5, pp. 1071–
1079, July 2011.

[19] H. Kawahara, J. Estill, and O. Fujimura, “Aperiodicity extraction
and control using mixed mode excitation and group delay manipu-
lation for a high quality speech analysis, modification and synthe-
sis system straight,” in inProc. Int. Workshop Models Anal. Vocal
Emissions Biomed. Appl., Sep. 2001, pp. 1–6.

[20] Y. Ohtani, T. Toda, H. Saruwatari, and K. Shikano, “Maximum
likelihood voice conversion based on GMM with straight mixed
excitation,” in Proc. INTERSPEECH, Sep. 2006, pp. 2266–2269.

[21] S. Takamichi, K. Kobayashi, K. Tanaka, T. Toda, and S. Naka-
mura, “The NAIST text-to-speech system for the blizzard chal-
lenge 2015,” in Proc. Blizzard Challenge Workshop, Sep. 2015.

[22] Z. Wu and S. King, “Improving trajectory modelling for DNN-
based speech synthesis by using stacked bottleneck features and
minimum generation error training,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 24, no. 7, pp.
1255–1265, July 2016.

[23] A. Graves, “Generating sequences with recurrent neural net-
works.” CoRR, vol. abs/1308.0850, 2013. [Online]. Available:
http://dblp.uni-trier.de/db/journals/corr/corr1308.html#Graves13

[24] A. Wrench, “The mocha-timit articulatory database,” 1999.
[Online]. Available: http://www.cstr.ed.ac.uk/artic/mocha.html

2503


