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Abstract
Gamakas, the embellishments and ornamentations used to en-
hance musical experience, are defining features of Karnatic Mu-
sic (KM). The appropriateness of using gamaka is determined
by aesthetics and is often developed by musicians with expe-
rience. Therefore, understanding and modeling gamaka is a
significant bottleneck in applications like music synthesis, au-
tomatic accompaniment, etc. in the context of KM. To this end,
we propose to learn both the presence and the type of gamaka in
a data-driven manner using annotated symbolic music. In par-
ticular, we explore the efficacy of three classes of features –
note-based, phonetic and structural – and train a Random Forest
Classifier to predict the existence and the type of gamaka. The
observed accuracy is ∼70% for gamaka detection and ∼60%
for gamaka classification. Finally, we present an analysis of the
features and find that frequency and duration of the neighbour-
ing notes prove to be the most important features.
Index Terms: gamaka, Karnatic Music, Symbolic Music, Ran-
dom Forest Classifier.

1. Introduction
Karnatic Music (KM) is an ancient classical music system with
its origins in South India. A distinct feature of KM is the usage
of gamakas – graceful curves in the pitch of a note that serve
as embellishments. The aesthetic appeal of a performance is
largely determined by the usage of gamaka that is dependent
both on the rāga, the fundamental melodic structure in KM,
and the musician. The rules for assigning an embellishment
to a particular note in KM is neither too open-ended nor very
specific [1]. For example, certain musical phrases demand
the use of specific gamakas, while certain other phrases allow
some amount of flexibility in choosing gamakas. Further,
KM performances are predominantly improvisational, and the
usage of gamaka varies considerably across musicians. Since
there can be multiple aesthetically correct variants of using
gamaka and may further vary significantly across musicians, it
is hard to encode or fix it as part of musical notation. Therefore,
performing both composed music and improvising requires a
certain amount of musical maturity.

Importance in Music Synthesis. Existing methods that
explicitly model gamaka [2, 3, 4, 5] overcome the complexity
involved in understanding gamaka by allowing 1) only a small
fraction of gamakas that are predetermined for a particular
rāga 2) using expert knowledge to construct templated
gamaka in terms of pitch track, tempo and amplitude. By
design, these models have multiple drawbacks including that
they do not scale to a large number of rāgas and require
extensive expert tuning. In the direction of better integration
of symbolic music and gamaka, the use of melodic atoms has

been proposed in the literature [6]. The melodic atoms include
both the note and the gamaka as the building blocks. Again,
similar to previous synthesis techniques, it requires experts to
decide what the melodic atoms for a rāga are, as there can be
innumerable melodic atoms in each rāga.

Gamakas in Karnatic Music. Although a comprehen-
sive and fairly general understanding of gamaka has been
elusive, traditional musicologists have classified gamakas into
ten, typically based on the playing techniques of the musical
instrument, vīna [7]. Further attempts by musicologists to
adapt this to singing and more general music performance
has seen a trend of increasing complexity and variance
across different schools of thought. Therefore, this structured
approach is largely abandoned in practical KM training, and
most musicians develop a sense for the usage of gamaka by ear
and experience. However, Subbarāma Dīkshita, an influential
musicologist and composer, documented music compositions
along with a novel annotation scheme for gamaka in his
seminal work, Sangīta Sampradāya Pradarshini [8] in the
early 20th century. While it is possible to perform the same
compositions with other variations, we use this version as the
gold standard and learn the nuances of gamaka in a symbolic
music setting.

Related Work. Most of the existing works on gamaka predic-
tion and classification use acoustic data for the task. Very few
works have addressed the problem of predicting gamaka from
annotated symbolic music. As part of expressive music synthe-
sis, the ornamentations in Jazz Guitar has been predicted [9]
using the RIPPER algorithm [10]. The extracted features were
pitch and duration of the present note and neighbouring notes,
chord, key and the perceptual parameters. Using a reduced
feature set, an average accuracy of 70% was observed. Note
that this was better than a random classifier by only 3.45%.
With an increased dataset of 27 songs, classifiers such as SVM,
ANN, Decision Trees and KNN were tried [11]. Interestingly,
decision trees performed the best at this classification task
yielding the best accuracy (78.68%), which was better than
the random classifier by only 4.9%. In the context of Indian
Classical Music, multiple works have addressed gamaka
identification from raw audio signal [12, 13]. Other research
efforts on the automatic music composition [14, 15, 16, 17] and
singing voice synthesis [18] for Indian Classical Music do not
address the problem of predicting gamakas from the score files.

Contributions. In this paper, we describe an approach
to detect the presence and type of gamaka associated with a
note in KM from the annotated symbolic music. To the best of
the authors’ knowledge, this work is the first one of its kind.
We propose three sets of features based on the notes, lyrics and
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the structure of the song. We train a Random Forest Classifier
(RFC) for the detection and classification of gamakas and
further, analyse the importance of these features for our task.

2. Background
In the commonly followed tradition of KM, an octave contains
a maximum of 12 note positions. Unlike western music, the
frequencies associated with the note positions are not fixed in
KM. The note frequencies are defined relative to an arbitrary
reference frequency. In this work, we denote the note positions
using English alphabets and numbers. Deviating from standard
convention practiced by musicians, we label the note positions
across octaves using numbers, to mean octaves 1,2 and 3 stand
for lower, middle and upper octaves, respectively. For example,
the 12 note positions in the lower octave are represented as S1,
r1, R1, g1, G1, m1, M1, P1, d1, D1, n1 and N1. Corresponding
middle octave positions are represented as S2, r2, ..., N2.

Rāga, the fundamental melodic structure in KM, is charac-
terized by an ordering of notes and associated note-sequences.
Rāga also serves as the basis for improvisation and evoking
various emotions. Different rāgas can have different number
of note positions per octave. For example, the rāga named
Mōhanam is a penta-tonic rāga, which has only five notes – S,
R, G, P and D – per octave, and these may occur in any arbitrary
order.

Gamakas account for the variability of notes in KM. They
add naturalness to the music from the KM perspective. A note
is considered to be properly defined only when the gamaka as-
sociated with it is properly addressed. Note that for the same
note, the usage of gamaka may vary from one rāga to another.
The performance of both improvisational and composed music
depends on the musician’s understanding of the rāga and the
usage of gamaka in that melodic framework. Sangītha Sam-
pradāya Pradarshini [8] classifies gamakas into 15 types, out of
which, some are very specific to the musical instruments.

3. Data Details
For our experiments, we consider all the songs in one of the
popular rāga (Kalyāni) and its derived rāgas1 from the English
translation of Sangīta Sampradāya Pradarshini [8]. We digitize
the information given in this book to construct a dataset. This
dataset contains the lyrics, notes, duration of notes, gamakas
and other structural information of 25 songs across nine com-
posers. The number of songs taken from each rāga is listed in
the Table 1. There are 9986 notes, out of which, 4013 notes have
gamakas and 5973 notes are plain notes. There are only 10 dif-
ferent types of gamakas in the dataset. Due to lack of training
samples (less than 10), we neglect two types of gamakas and
consider only eight different classes. The different gamakas
considered in this paper are: Podi, Kampitham, Sphuritham,
Nokku, Ētra Jāru, Irakka Jāru, Orikkai and Othukkal.

4. Experiments
Initially we explore the possibility of detecting the presence of
gamaka in a note. For this purpose three different feature sets
based on adjacent notes are proposed – absolute and relative
frequencies, lyrics (phonetic classes like vowels, fricatives, etc.)
and the structure (such as beat cycle information). We select a

1a derived rāga consists only of a subset of the notes of the parent
rāga

Table 1: Number of songs in each rāga in the dataset

Rāga Training Test Test Total
Set Set 1 Set 2 Songs

Kalyāni 5 4 – 9
Mōhanam 3 2 – 5
Sāranga 2 2 – 4
Yamunā kalyāni 3 2 – 5
Hamvīru – – 2 2

Total 13 10 2 25

training set with 13 songs covering 4 rāgas. Two test sets are
constructed. Test set 1 (seen rāga test set) is formed by 10
songs belonging to the same set of rāgas in the training set.
The test set 2 (the unseen rāga test set) consists of two songs
belonging to rāga Hamvīru, which is not present in the training
set. Thus it is possible to analyze the performance of the system
for seen/unseen rāgas separately. Table 1 lists the number of
songs in training/test sets. There are a total of 6198 notes in the
training set, 3260 notes in the seen rāga test set, and 528 notes
in the unseen rāga test set.

4.1. Note-based Features

Note based features represent the frequency positions and the
duration of the notes in the song. The 36 notes covering the
three octaves (12 notes per octave) are sorted in the increasing
order of frequency. The frequency positions of these notes are
represented using numbers from 1 through 36.

We consider a context of five notes, centered around the
note under consideration, for feature extraction. The frequency
position of the middle note is used as a feature. In addition, the
difference in frequency positions of the four adjacent notes with
respect to the middle note are used as features. Features also
include durations of all the five notes in the context. In addition,
we have four more rāga–dependent features. Here, we consider
only the notes present in the rāga of the song. For creating
these features, rāga–specific frequency positions are assigned
to notes. For example, in the rāga called Mōhanam, only five
notes – S, R, G, P and D – are present in one octave. Thus the
three octaves are represented by numbers from 1 through 15.
The rāga–dependent relative positions of the four neighbouring
notes are found out with respect to the middle note. Thus the 14
dimensional feature set is formed.

For example, let a set of contextual notes be S2 R2 S2 D1
S2, from a song belonging to the rāga Mōhanam. Let S2 in the
middle of the set be the note under consideration. The middle
note’s absolute frequency position can be found out to be 13.
The relative position of the preceding 2 notes with respect to the
middle note will be +2 (note R2) and 0 (note S2). Similarly, for
the succeeding notes D1 and S2 it will be -3 and 0, respectively.
From the rāga–based representation of Mōhanam, the relative
frequency positions of the neighbouring notes S2, R2, D1 and
S2 are 0, +1, -1 and 0, respectively.

We use a Random Forest Classifier (RFC) for detecting the
presence of gamakas in the notes. The parameters of the clas-
sifier are set to the default values. In order to evaluate the per-
formance of note-based features in detecting the gamakas, we
perform a cross validation across all the 13 songs in the training
set. The cross validation is performed in a round-robin fash-
ion, by excluding each of the 13 songs from the training set and
testing on the excluded song. The average accuracy obtained
is 71%. From the accuracy score, it can be concluded that this
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feature set contains information about the presence/absence of
gamakas associated with the notes.

We also explore the use of Artificial Neural Network
(ANN) classifier to evaluate the performance of note–based fea-
tures. Maximum cross validation accuracy obtained using ANN
is found to be 67%. We observe that the training accuracy itself
is inferior to that using RFC by around 15%. This may be be-
cause of the nominal nature of the features used. Therefore we
do not explore ANN classifier for the rest of our experiments.

4.2. Phonetic Features

Phonetic features contain information about the phonetic
classes of the lyrics of the songs. We try to divide the lyrics
into five phonetic classes, namely, vowel, fricative, stop, nasal
and glide. Each phoneme in the lyrics of the songs falls into
any of the five phonetic classes. To construct this feature set,
we consider a context of four phonetic entities from the lyrics
associated with each note. Starting and ending phonemes asso-
ciated with the current note form two entities. Starting phoneme
associated with the succeeding note, and the end phoneme as-
sociated with the preceding note form the other two phonetic
entities. A five dimensional binary vector is formed for each of
the above phonetic entities, indicating the phonetic class of that
entity. Thus the feature set is a 20 dimensional binary vector.

We use the same set up as in the case of note-based features
for conducting experiments to evaluate the performance of pho-
netic features. The average accuracy is observed to be 56.74%.
It seems that the lyrical information does not play a major role
in detecting the presence of gamaka in a note.

4.3. Structural Features

These features contain information about the structural ele-
ments of the song. In KM, a song is divided into different
sections such as pallavi, anupallavi, charanam, swaram, etc.
Pallavi, the beginning segment of the song, often gets repeated
after every other segment. Pallavi is followed by anupallavi,
charanam and swaram. We add 4 binary features to represent
the section to which the current note belongs. We also consider
other structural elements such as the beginning and end points
of beat cycles and sub-beat cycles, the notes starting ‘off-beat’,
etc. There are 12 such classes, and a 12-dimensional binary
vector indicates the presence of these classes associated with
each note. After conducting the experiments on the training
set, the average accuracy using the structural features is found
to be 57.86%. The accuracy is better than that of the phonetic
features by 2.53%. But it is inferior to the accuracy obtained
using note-based features by 12.14%. It can be inferred that the
structural features do not contain as much information as in the
case of note-based features to distinguish between gamakas and
non-gamakas.

4.4. Feature Combination

In this experiment, we aim to test the amount of additional in-
formation that can be provided by the structural and phonetic
features, when used along with the note-based features. We
combine all the features to make a 46 dimensional feature vec-
tor. With these features, we conduct the experiments on the
training set using the RFC. The accuracy obtained after cross
validation is 70.13%. This result is inferior to the one obtained
for note based features alone. To analyze this, we look at the
training accuracy with the same experimental conditions. The
training accuracy is found to be 98.6%. The wide gap between

the train and cross validation accuracies indicates that there is
an over-fit.

The over-fit problem can be reduced by employing regular-
ization. We perform regularization by increasing the number
of estimators and/or increasing the minimum number of sam-
ples required to split a node. We perform a grid search of these
hyper–parameters jointly to get the maximum training cross val-
idation accuracy. Figure 1 shows an example plot of accuracy
versus different values of number of estimators.
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Figure 1: Change in accuracy with respect to number of estima-
tors
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Figure 2: Change in accuracy with respect to number of se-
lected features

The optimum values for the number of estimators and the min-
imum number of samples needed to split the node are found to
be 256 and 4, respectively. Using these hyper–parameters, the
training accuracy reduces to 96.4% while the cross validation
accuracy increases to 72.73%. The cross validation accuracies
for different experimental conditions are listed in Table 2.

Table 2: Cross validation results across experimental settings.

Default Parameters Tuned Parameters

Full Full Selected
Features Features Features

70.13% 72.73% 73.53%

Another option to tackle the over-fit problem is feature se-
lection. We perform feature selection based on the feature im-
portance parameter of RFC. The importance of a feature is
computed as the reduction of information when a node is split
using this feature [19]. The variation of cross validation accu-
racy with respect to the number of selected features is illustrated
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in Figure 2. 17 best features having maximum information re-
duction are selected. All the 14 note-based features happen to
be in the selected features. This shows their importance in de-
tecting gamakas. From the other two sets of features, only two
phonetic features and one structural feature are selected. Hence
it can be concluded that in our experiments, the structural and
phonetic features do not have much of the information regard-
ing gamakas. The 17 selected features are listed in Table 3.

To evaluate the performance on the test data, we use the op-
timized hyper–parameters and reduced feature set. The results
obtained for different test sets are listed in Table 4. RFC per-
formance is better than the random classifier (classification by
chance) by around 10%. It is also clear that the test accuracies
obtained for the seen rāgas do not deviate much from the cross
validation accuracies. But in the case of unseen rāga, there is a
reduction in test accuracy, especially with the selected features.
This may be because of the fact that, the features selected are
tuned only for the seen rāgas.

Table 3: Selected features

Note Post1 Note Rāga Post1
Note Post2 Note Duration Post1
Note Pre1 Note Duration Pre1
Note Current Note Duration Post2
Note Rāga Pre1 Note Duration Pre2
Note Pre2 Charanam
Note Rāga Pre2 Prev Note End Stop
Note Duration Current Post Note Begin Stop
Note Rāga Post2

Table 4: Test accuracies for different features

Test Set
Random Accuracy

Classification
Accuracy

Full
Features

Selected
Features

Seen Rāgas 60.21% 72.47% 72.1%
Hamvīru 57.57% 70.62% 67.03%

4.5. Gamaka Classification

In the next set of experiments, we try to classify the gamakas as-
sociated with a note into 8 different classes detailed in Section
3. The training and test sets contain the same songs as in the
previous experiment. But for the gamaka classification experi-
ment, we consider only the notes which contain gamakas. The
plain notes are removed from the test and training sets. Notes
having gamaka are selected manually from the ground truth.
The training set for this experiment consists of 2534 notes, and
the seen and unseen rāga test sets consist of 1261 notes and
218 notes, respectively.

For this experiment, we follow the same procedure as in
the detection experiment. 22 features are selected, which yield
the best accuracy. Out of these 22 features, 17 are the selected
features from the detection experiment. Five more phonetic fea-
tures are also selected. The classification accuracies for the RFC
using two different feature sets and for different test sets are
listed in Table 5. The accuracies for the random classification
(selecting the most probable class) are also listed in the table. It
can be seen that the accuracies using RFC are better than that
for the random classification, by around 40%.

Table 5: Test accuracies for gamakas

Random Accuracy for RFC

Test Set Classification
Accuracy

Full
Features

Selected
Features

Seen Rāgas 22.8% 58% 58.8%
Hamvīru 24.5% 58.7% 63.5%

Precision and recall values for individual gamakas for the
seen and unseen rāgas are shown in the bar graph given in Fig-
ure 3. The gamaka with the least value for precision/recall is
Kampitham. This gamaka has less training examples (∼180).
We also observe a confusion in deciding between the gamakas
Ētra Jāru and Othukkal, which may account for the reduction
in the recall value of Othukkal. In these experiments, we had
access only to a limited amount of data. We envisage that the
accuracies can be improved by conducting the experiments on
a larger dataset.
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Figure 3: Precision and recall for different gamakas (for both
the seen and unseen rāga test sets)

5. Conclusion and Future Work
In this work, we detect the presence as well as the type of
gamakas from KM notations, using a data-driven approach. We
propose three different sets of features – based on the frequen-
cies and durations of the notes, phonetic class of the lyrics and
the structure of the song. RFC is used for the detection and clas-
sification. Gamaka detection experiments on different feature
sets reveal that note-based features contain the most relevant in-
formation. Detection accuracies obtained with the full/selected
features are around 72% for the seen rāgas test set. The cor-
responding results for the unseen rāga test set are 70.62% (full
features) and 67.03% (selected features).

For gamaka classification, we use the same experimental
set up as in the detection experiments. The classification ac-
curacies for the seen rāgas are around 58% for the full and se-
lected features. Accuracies for the unseen rāga are around 57%
using full features, and around 64% using selected features.

Due to the limited amount of training data, we still observe
an over-fit in our experiments. We would like to extend our
work by constructing a larger dataset, for better modeling of
gamakas associated with notes.
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