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Abstract

We propose an algorithm to denoise speakers from a single mi-
crophone in the presence of non-stationary and dynamic noise.
Our approach is inspired by the recent success of neural network
models separating speakers from other speakers and singers
from instrumental accompaniment. Unlike prior art, we lever-
age embedding spaces produced with source-contrastive esti-
mation, a technique derived from negative sampling techniques
in natural language processing, while simultaneously obtaining
a continuous inference mask. Our embedding space directly
optimizes for the discrimination of speaker and noise by jointly
modeling their characteristics. This space is generalizable in
that it is not speaker or noise specific and is capable of denois-
ing speech even if the model has not seen the speaker in the
training set. Parameters are trained with dual objectives: one
that promotes a selective bandpass filter that eliminates noise at
time-frequency positions that exceed signal power, and another
that proportionally splits time-frequency content between sig-
nal and noise. We compare to state of the art algorithms as well
as traditional sparse non-negative matrix factorization solutions.
The resulting algorithm avoids severe computational burden by
providing a more intuitive and easily optimized approach, while
achieving competitive accuracy.

Index Terms: deep learning, speech, speaker denoising, non-
stationary processes

1. Introduction

Signal denoising has been a problem in multiple media for
over a century with applications ranging from acoustic speech
processing, image processing, seismic data analysis, and other
modalities. For each application, approaches have evolved over
the span of several decades ranging from traditional statistical
signal processing like Wiener and Kalman filtering, wavelet the-
ory, and specific instances of matrix factorization. While effec-
tive for locally as well as wide-sense stationary signals, even
with a storied history, these efforts have seen less success with
more dynamic and in-the-wild sets of noise owing to their algo-
rithmic capacity.

Dynamic noise represents many real-world speech situa-
tions, and solutions that have impressive results primarily fo-
cus on hardware: array processing efforts [1] in the form of
SONAR, RADAR, and Synthetic Aperture sensing. These
methods solve the problem by using the inputs of multiple sen-
sors to process the source of interest. Unfortunately, much of
recorded contemporary media is typically done with more lim-
ited hardware, such as a smartphone, and the same methods can-
not be easily extended to the monaural case [2], in which audio
is recorded from a single microphone.

In previous approaches to the monaural problem, assump-
tions are explicitly made on signal and noise attributes, or
specifications have enabled some control over environment and
recording devices. The more general case of single-track speech
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recordings in noisy or reverberant rooms has become increas-
ingly common due to the proliferation of inexpensive portable
devices with recording capabilities such as cellphones and lap-
tops. In such cases, no guarantees on speech or noise attribu-
tions can be assumed regarding the nature of the environment
or the location of microphones.

Over the last decade, machine learning approaches have be-
gun to see success in this scenario. In particular, adaptation of
familiar matrix factorization techniques [3] to the processing
of time-frequency representations of audio signals has proven
useful. However, these methods can be difficult to make perfor-
mant [4], and in many cases additional complexity is required
to model source characteristics accurately.

More complex sources can be modeled with the inclusion
of a priori knowledge regarding their characteristics. This can
be empirically derived from a large corpus of training data pro-
vided the model in use has a high capacity. In recent years,
neural network and deep learning approaches have had great
success in other audio processing applications, including the
general speech denoising problem [5]. Among these methods,
recurrent neural networks in particular have shown the most
promise in modeling acoustic time series [6, 7], especially when
applied to time-dependent spectral features.

One challenging aspect of neural network approaches is the
development of cost functions. For speech signals in particular,
the computational complexity of the cost function is important
as the timescales associated with speech contain many samples.
Additionally, if the goal is to separate sources (e.g, a speaker
and a noise source), the cost function must be invariant to dif-
ferent permutations of the recovered sources since the ordering
is arbitrary. The proposed approach automates the featurization
of speakers and the characterization of noise using an efficient
permutation invariant sampling technique.

Building upon our previous source-contrastive estimation
work [8], we extend our approach of directly optimizing a vec-
tor space that isolates specific source characteristics to the gen-
eral speech denoising problem. Additionally, we further im-
prove upon our model by incorporating a mask inference term
in the cost function as proposed in [7]. Our model is capable
of removing a wide variety of noise types from speech and is
computationally efficient to train.

The remainder of this paper describes our approach to find-
ing optimal vector spaces using SCE and applies the technique
to synthetically-mixed noisy speech. We dive deeper into the
state of the art techniques, some of which we leverage, in Sec. 2.
The approach is then described in Sec. 3 with implementation
details in Sec. 4. Experimental results are shown in Sec. 5,
which is followed by a summary and discussion of future work.

2. Related Work

Considerable work has been done in speech processing for as
long as recordings have been made. Here we describe a few
approaches representative of the diverse set of solutions to the
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denoising problem, though many others (such as [9]) exist and
have been ommitted for brevity. We begin with methods that
are rooted in signal processing theory, where a large number
of approaches use some type of matrix factorization [10, 11].
In particular, sparse non-negative matrix factorization (SNMF)
is shown effective at extracting non-stationary noise sources
in [4, 12, 3]. SNMF constructs a set of spectral basis func-
tions from training data and linearly combines these with a set
of learned weights to reconstruct the spectral features of the
desired signal. Sparsity is typically enforced by an ¢;-norm
constraint on the learned weights that contains a multiplicative
hyper-parameter, ;.. As will be shown in Sec 5, linear meth-
ods such as these lack the algorithmic capacity to compete with
more modern techniques.

2.1. Convolutional Denoising Autoencoder

Autoencoders have been used to successfully remove noise and
to isolate single sources from audio signals [13]. Atahigh level,
autoencoders learn to featurize inputs (encoding) and then re-
construct them as outputs (decoding). This approach is well
suited to denoising because a model is forced to build com-
pressed representations of the input by discarding information
about the noise.

Closely related are convolutional autoencoders, typically
used for denoising images [14, 15]. These models make use
of convolutional layers during encoding and deconvolutional
layers during decoding. Convolutional denoising autoencoders
(DAE) applied to audio signals represented via spectrograms
(using STFT) operate similarly, though many of these ap-
proaches have problems generalizing to unseen signals. More-
over, convolutional autoencoders are an architectural construct
still dependent on their cost functions, a challenge that defines
how they perform in the context of denoising, where the com-
mon /2-norm may not be sufficiently descriptive.

2.2. Neural Network-Based Source Embeddings

Recent success in monaural audio source separation and denois-
ing have taken to learned embedding vectors [6, 16, 17, 7]. The
primary advantage of learning embedding vectors is that they
bypass the so-called permutation problem in which the output
of a learning algorithm must be permuted to account for the
unordered nature of the target sources [18]. Additionally, the
number of sources to be separated and denoised can be arbi-
trary with an appropriate clustering technique (although, this
depends on how inference is performed).

The embedding model we propose in the following sec-
tions most resembles deep clustering [6] and mask inference
(DC+MI) found in [7], though with a vastly reduced cost func-
tion. The DC+MI network learns embeddings given the spec-
tral magnitude of the mixed audio sample using a series of four
bi-directional LSTMs (BLSTM). In addition to clustering those
embeddings to create a binary mask as in [6], a learned non-
linear transformation is used to directly translate the embed-
dings into a ratio mask. This has the advantage of limiting some
of the artifacts inherent to performing a binary mask. How-
ever, this comes at a cost of fixing the number of sources to
two. Clustering on an arbitrary number of sources can still be
performed on the embeddings, but only a binary mask can be
constructed from these clusters.
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3. Approach

The approach used in this paper combines the mask inference
capabilities of cited literature in Sec. 2 with the flexibility of
SCE to remove dynamic, non-stationary noise sources from
speech for monaural audio signals.

3.1. Datasets

Our task is to isolate speech from a mixture of dynamic
noise and speech using a monaural audio signal. All de-
noising algorithms are trained and evaluated on a mixture of
the LibriSpeech [19] and UrbanSound8K [20] datasets. Lib-
riSpeech provides high-quality audio recordings of isolated En-
glish speech from both male and female speakers and Urban-
Sound8K provides recordings from ten non-stationary noise
classes. Two two-second clips from each dataset are added at
various SNR ratios to create the noisy-speech data. The SNR
ratio is continuously varied between -5 and 5 dB for the training
phase for all but SNMF algorithm wherein speech and noise are
fed in separately. No impulse response convolution is used so
as to focus solely on removing non-stationary sources of noise.
The application of our technique to speech in reverberant envi-
ronments is left for future work.

For the training, validating, and in-set testing of each algo-
rithm we use the train-clean-100 set of audio readings from the
LibriSpeech dataset, which provides approximately 100 hours
of speech evenly split between female and male speakers. For
out-of-set testing we use the dev-clean set from LibriSpeech.
Although all noise types from UrbanSound8K are used for
training, noise files from each noise type are reserved for train-
ing, validation, and testing.

3.2. Model

Our model for denoising monaural signals assumes that additive
noise is linearly mixed with speech signal and can be separated
into individual source components. In this context, a source is
either a speaker or a particular type of noise. For a given source
i in a speaker-noise mix, our model masks the magnitude re-
sponse. This mask filters out information from time-frequency
bins in the short-time Fourier transform (STFT), X (¢, f), that
do not belong to a given source, while passing those time-
frequency bins that do.

Typically, the predicted mask Yf? for the 3" source is im-
plemented as either a ratio or in our case, a binary mask. We let
Y; € {-1, l}MXTF, where M < C, C being the total num-
ber of sources in our training set and M being the number to
be mixed. To set our masks, if i*" source is the loudest in time
frequency bin (¢, f), then Yt(lf) =1, and thz) = —1 otherwise.

Similar to our previous work [8] and inspired by natural
language processing efforts [21], we use a speaker embedding,
optimized by the use of two vector spaces: an input and an out-
put space. The first vector space is an input embedding that im-
plicitly defines a source, and it is not associated with any source
in particular. We also have an output embedding that explicitly
trains to a corpus of known sources. Inference uses only the
input vector space to generalize to any possible source by clus-
tering our neural network outputs. In our notation, the input and
output vector spaces for a given sample are implemented as ten-
sors with an embedding space of F, labeled as V; (¢, f ) and V,,
respectively. The columns of either tensor have £ dimensions
(hidden units) and denote the vectors associated with a given
source.

To train and generate our embeddings, we use a recurrent



True Speaker Mask

Predicted Speaker Mask

Figure 1: Example of predicted and true binary masks applied
to a sample mixed at an SNR of -1

neural network regression to V;. To compare to [6] and [7], we
use a total of four BLSTM layers, and we have a dense layer
that is convolved over the output 2D vector produced by the
final BLSTM. This final layer of source embeddings is also fed
through a non-linear transform as in [7] to yield the ratio mask.

The SCE loss [8] for a given time frequency bin and sample
b is denoted as LS’}. Then,
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Intuitively, the output of the neural network at time (¢, f) is

v (¢, f) and the output vector v( )is an embedding for source s
at frequency f. Say that source 1 is louder than source 2 at time
frequency bin (¢, f) for sample b. Then we would ideally like
the correlation between the embedding produced by our neural
network v; and the vector for source 1 to be high. That is to say,
we would like o(vZ v(V)) — 1. Simultaneously, the correlation
between v; and the vector for source 2 should be low, since these
two vectors should be anti-correlated if they are sufficiently dif-
ferent. That is to say, we would like o(v v(?)) — 0. Mathe-
matically speaking, we are pulling our embedding towards our
source vector v5"
v((f). Which sources to attribute appropriate correlation/anti-
correlation to is determined by the label Y, which will be +1 in
the former case and —1 in the latter. It is important to note that
we can save on both computation and accuracy by optimizing
only those sources that are in Sp, which in our case will have
two elements (one speaker and one noise source).

Additionally, during inference we do not use the output vec-
tor space V,,. While it is true that computations are further re-
duced, the intention is that the out-of-set sources set is allowed.
In fact, even though we may train on mixes with fewer sources,
we can do inference in situations where there are arbitrary num-
bers of sources.

and pushing it away from non-source vectors
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Our algorithm (denoted SCE+MI) is implemented in Ten-
sorflow, v1.4 [22], with an architecture consisting of four
BLSTM layers 71, 12,13, 74 of 500 units each. These are fol-
lowed by a fully connected layer d; that maps the output of the
fourth BLSTM layer to the input vector space. The BLSTM
layers use tanh nonlinearities, and the fully connected layer is
linear. For a batch of inputs X, the output of the four BLSTM
layers r1, 72,73, 74 € REXT*300 While the final (embedding)
layer of the neural network is technically a fully-connected lin-
ear layer, it is implemented as a 1D convolution over the 74
output tensor with a filter w € R**5°°* £ The output of the
convolution can then be reshaped to give the input vector space
V; € RPXTXFXE  The vector-space output is fed through
what is effectively a 1D convolution along the embedding di-
mension with a softmax that yields the final ratio mask output.
This implementation allows the model to be run for arbitrary
input 7", which is useful at inference time.

For efficient evaluation of the cost function of Eq. 1 across
batches, the sources vectors for sources only represented in each
batch are assembled into a tensor V, € RE*M*E  The order-
ing of the M speakers in V,, must match the ordering used in
Y, but is otherwise arbitrary. To efficiently compute the dot
products V; - V,, in Eq. 1 with broadcasting, we expand the
dimensions appropriately.

This gives an output of the dot product operation as a ten-
sor D € REXTXFXM 'which is compatible with the labels Y
and so they can be multiplied together elementwise to give the
argument of the sigmoid in Eq. 1. The remaining portion of the
cost function is easily evaluated.

Our batch size is B = 256 during training. The input
tensors have dimensions X € RP*T*%" and label tensors are
Y e REBXTXEXM where T = 78 is the length of total time
steps per sample and F' = 257 are the number of frequency bins
used.

4. Experiments

In all experiments, signals are resampled and scaled to 10k H z,
zero mean and unit standard deviation, from which the short
time Fourier transform (STFT) spectrograms are extracted with
a Hanning window of 512 and 256 stride length. We use audio
clips of approximately two seconds which, when combined with
the STFT operation, yield input features of dimension 257 x 78
(frequencies by time frames). The complex phases ¢;, 5 were
saved separately for use in post separation processing. Separate
spectrograms for the signal from each speaker and noise (S’t(?f)
forn € {1,2,...,C}) were computed for training and evalua-
tion purposes, while the total spectrogram was computed by the
elementwise sum X¢ y = St(") + S, (m> for a speaker and noise
with IDs n, m. I

The magnitudes of the X, ; spectrograms were then passed
through a square root nonlinearity and percent normalized. This
is similar to the procedure suggested in [23]; however we ob-
tained better results with a square root rather than a logarithmic
nonlinearity. Source labels Y< <) are assigned to each T-F bin by
giving a value of 1 to the 51gnal with the largest magnitude at
that time and frequency, and a value of —1 to all other sources.

4.1. Algorithm Comparisons

We compare three approaches against the proposed work: a
linear matrix factorization method (SNMF), a denoising auto-
encoder (DAE), and a hybrid deep clustering/mask inference ar-
chitecture (DC+MI). SNMF is adopted from [4] with the most



optimal hyperparameter settings found therein and trained on
10000 two-second audio clips of noise and speakers. To aid in
training SNMF we removed portions of each spectrogram based
on a log max-amplitude threshold for each time frame. This
threshold was found to isolate spoken words while trimming
the surrounding empty audio.

Our comparison convolutional DAE is based on [24] and
consists of 15 convolutional layers, followed by 15 deconvolu-
tional layers. Each layer contains 128 5x5 filters with relu acti-
vation and constant input size. Skip connections are employed
between every other pair of matched convolutional and decon-
volutional layers. The model was trained using RMSprop with
Nesterov momentum and a learning rate of 5e-5.

The DC+MI network is an implementation of the architec-
ture found in [7]. We use the same optimal set of hyperpa-
rameters as they do except that our loss function for the mask
inference head uses the true spectral component rather than a
proxy.

Comparisons of the performance of each alogrithm are
quantified by improvement in the source-to-distortion ratio
(SDR). Each algorithm is evaluated on how well it improves
the SDR metric for an input SNR range of [—5, 5]dB and for
each noise type.

4.2. Reconstruction

At inference time for our model and the deep-clustering head of
DC+MLI, a signal consisting of an unknown mixture of sources
is preprocessed as described in the previous subsection, giving
a complex T-F estimate of a single source signal, S't, +. Aninput
feature is generated and fed through the model to obtain the vec-
tors V;. A K-means clustering is then performed on the vec-
tors in order to generate a labeling prediction ¥ € RT*F*¥

which each T-F element is associated with a cluster label. Here
the element Yt(I;) = 1 if the associated vector V; ; belongs to

the k" cluster, and Y( ) = —1. While K-means clustering was
used for both DC and SCE to allow for a more direct compar-
ison of the two objectives, spherical K -means is more natural
for SCE. The labels obtained via clustering can then be used as
masks to reconstruct a source S, ( f) from each of the K clusters.
T-F representations of the 1nferred sources are calculated as the
element-wise multiplication of the input spectrogram with the
inferred labeling.

1 /7~
$8 = X505 (th’? + 1) 3)

The source spectrogram Sékf) is then converted (using the in-
verse STFT) into a source waveform, completing the inference
process.

The output of the mask inference head of SCE+MI and
DC+MI and that of SNMF is a ratio mask that, when multiplied
element-wise with the original spectrogram, yield the respec-
tive speaker and noise sources. These ratio masking techniques
have the potential to produce higher-quality audio than binary
masking as the T-F bins can be shared amongst sources (as is
actually the case).

Our contribution, replicated research [7, 4], and
evaluation code are open source and can be found at
http://github.com/lab4l/magnolia.

5. Results

The results from our experiments on a hold-out set of mixes are
summarized in Figs. 2a and 2b. The performance of the mask

inference head of SCE+MI is on par with the DC+MI (+13 dB
at an input SNR of [-5,-4] dB) while the clustering performance
of SCE (+11.5 dB) is slightly better than the clustering of the
SCE+MI and DC+MI algorithms. Thus, SCE may be more de-
sirable when the number of sources to be separated is arbitrary.
The improvements in SDR are greatest for more statistically sta-
tionary noise sources and inputs with lower in SNR. This can
be explained by the fact that at higher input SNRs the signal
is already quite prominent, so there is less room for improve-
ment. The performance of the deep learning-based methods is
relatively consistent across input SNRs while SNMF sees more
dramatic differences.

SDR Improvement Versus Noise Type

20.0 SNMF = DC + MI(C) W= SCE + MI(C)
e DAE = SCE + MI (MI) = SCE
= 175 |mm DC + MI (M)

o
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(a) Performance versus noise source. DC+MI (C) rep-
resents using the embeddings for clustering to recon-
struct a binary mask. DC+MI (MI) represents using
mask inference for source separation. Likewise for
SCE+MI (C) and (MI).

SDR Improvement Versus Input SNR

SNMF = DC + MI(C) s SCE + MI(C)
161 |mem DAE m— SCE + MI (M) m SCE
= DC + MI (MI)

B Input SR (dB)

SDR Improvement (dB)

(b) Performance versus input signal-to-noise ratio
(SNR). The values indicated for the input SNR repre-
sent a range of SNRs +.5dB around the shown value.
(i.e. 3.5dB represents SNRs in the range of [3,4] dB)

6. Conclusions

We show that SCE with mask inference gives improved re-
construction performance for dynamic noise source denoising.
Mask inference performs well (on average, +12 dB in SDR) re-
gardless of the clustering loss it’s coupled with. SCE showed
the best clustering performance (on average, +11 dB in SDR).
This indicates that denoising in the presence of an arbitrary
number of sources, SCE may give better accuracy.
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