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Abstract

Lattice-free maximum mutual information (LF-MMI) training,
which enables MMI-based acoustic model training without any
lattice generation procedure, has recently been proposed. Al-
though LF-MMI showed high accuracy in many tasks, its MMI
criterion does not necessarily maximize the speech recognition
accuracy. In this work, we propose a lattice-free state-level min-
imum Bayes risk training (LF-sMBR), which maximizes state-
level expected accuracy without relying on a lattice generation
procedure. As is the case with the LF-MMI, LF-sMBR avoids
redundant lattice generation by exploiting forward-backward
calculation on phone N-gram space, which enables a much sim-
pler and faster training based on an SsMBR criterion. We found
that special care for silence phones was essential for improv-
ing the accuracy by LF-sMBR. In our experiments on the AMI,
CSJ, and Librispeech corpora, LF-sMBR achieved small but
consistent improvements over LF-MMI AMs, showing state-of-
the-art results for each test set.

Index Terms: lattice-free maximum mutual information,
speech recognition, acoustic model, sequence training

1. Introduction

Recent advances in automatic speech recognition (ASR) are
largely owed to the progress made with deep neural network
(DNN)-based acoustic models (AMs). In an earlier version of
DNN-based ASR, AMs were trained using a frame-level cross-
entropy (CE) loss criterion [1, 2, 3], which provided signifi-
cant accuracy improvements compared to the Gaussian mix-
ture model (GMM)-based AMs [3, 4, 5]. After the success
of CE-based AM training, sequence-level training criteria such
as maximum mutual information (MMI), state-level minimum
Bayes risk (sMBR), and boosted MMI (bMMI) were intro-
duced, showing much better accuracy than CE-AMs [6, 7].
Because MMI, sMBR, and bMMI all require error calculation
over the entire hypothesis space, it is conventional to constrain
the error calculation space with lattices generated by CE-AMs.
This CE-AM-based lattice generation has two implicit prob-
lems. First, such a training procedure could easily fall into local
optimum nearby CE-AMs, resulting in semi-optimum accuracy,
and second, it requires a very high computational cost, which
we want to avoid especially when the data size is quite large.
Recently, lattice-free maximum mutual information (LF-
MMI) training of acoustic models has been proposed [8].
LF-MMI achieved MMI-based neural network training from
scratch, i.e., without relying on the CE-based lattice gener-
ation procedure. Instead of lattice-based error calculation,
LF-MMI uses forward-backward calculation on phone N-gram
space. The key advantage here is that forward-backward cal-
culation can be implemented in a highly parallelized way by
using GPGPU techniques, which lower the computational cost
of forward-backward calculation over the entire training proce-
dure. LF-MMI-training also showed much better accuracy than

CE- and sMBR-based training in many tasks [8, 9, 10].

One disadvantage of LF-MMI is that its MMI criterion does
not necessarily maximize the speech recognition accuracy. Be-
cause of this property, sMBR training, which maximizes state-
level expected recognition accuracy, often achieved the best re-
sults if applied after LF-MMI training. In previous literature
[8, 11, 12], sMBR training after LF-MMI training showed a rel-
ative improvement of about 2%-6% ' over original LE-MMI
AMs. Importantly, these investigations into sMBR training
were conducted using conventional lattice-based error calcula-
tion. Considering the advantages of LF-MMI training, it would
be better if SMBR training could be realized in a lattice-free
manner.

In this work, we propose lattice-free SMBR (LF-sMBR) as
an extension of LF-MMI. The same as LF-MMI, LF-sMBR
circumvents redundant lattice generation by using forward-
backward calculation on phone N-gram space. The main part
of forward-backward calculation is realized using GPGPU tech-
niques, which enables a much simpler and faster training based
on the SMBR criterion. We found that the special treatment of
silence phones was essential for improving the accuracy by LF-
sMBR. Experiments on the AMI meeting corpus [13], the cor-
pus of spontaneous Japanese (CSJ) [14], and LibriSpeech [15]
showed ~2% relative improvements over LF-MMI AMs by LF-
sMBR. Improvements were small but consistent across test sets,
and our AM achieved state-of-the-art results for each test set.
Our training procedure is all lattice-free while best results were
obtained by LF-sMBR training starting from LF-MMI AMs.

We should point out that exact calculation of “expected
word accuracy” is still difficult (though not impossible [16]),
and is beyond the focus of this paper. Instead, we use “state-
level” expected accuracy, which can be estimated on phone
N-gram space, and focused on the improvement over naive
LF-MMILI. In the recent work most similar to ours [17], the
authors proposed a lattice-free version of boosted MMI and
achieved about 2 % relative improvement over LF-MMI. Our
work achieved similar improvements over LF-MMI but differs
in that it is based on an sSMBR criterion. Comparison with other
criteria remains our future work.

2. LF-MMI-based acoustic modeling

The training criterion for LFE-MMI is defined as 2

FLFMMI _ ZZp(s|gi\’7xu)logP(S|gD7Xu), )
u S

where u is the index of training utterances. The term X, indi-
cates acoustic features for utterance u, and S indicates a hypoth-

INote that these numbers are relative improvements from highly ac-
curate LF-MMI AMs. LF-MMI itself achieved much better results than
CE AMs and CE+sMBR trained AMs [8, 10].

This is a numerator-graph (g,{)’ )-based extension of basic MMI-
criterion FMMI — >, log P(Sw|Xu) [6, 71, which uses a Viterbi-
aligned reference state sequence S,, instead of gé\f .
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esis state sequence for X,,. The term Qé\] indicates a numerator
(or reference) graph that represents a set of possible correct state
sequences for utterance u. The term G represents a denomi-
nator graph, which represents a possible hypothesis space. The
error signal w.r.t. the final layer’s output y(u, t) corresponding
to a state s(u, t) of the AM at the time frame ¢ of utterance w is

calculated as
GFLEMMI

Ay(u,t)

D

= fYé\([u,t) - Ws(u,t)' (2)

The term 7}, ;) (* is N or D) represents a posterior probability

of being in a state s(u, t) calculated on numerator graph G2 or
denominator graph G

Vecury = P(s(u,1)|G", X)) = > Osia(uy P(S|G", Xur).
Seg*

Here, ds.5(u,¢) is a delta function, which is 1 if the state s(u,t)
corresponding to y(u, t) is in S, and 0 otherwise.

In LE-MMI modeling, the numerator graph is constructed
by loosely following GMM-AM-based reference alignments,
while the denominator graph is created from the phone 4-
gram language model (LM) trained using phone-level transcrip-
tion of training data. “Lattice-free” means that the denomi-
nator computation is done without conducting any lattice gen-
eration procedure, which is required when using the conven-
tional MMI training [6, 7]. Importantly, the number of states
in phone 4-gram space is fixed during the entire training pro-
cess, i.e., independent of utterance w. This enables highly par-
allelized implementation of the forward-backward calculation
using GPGPU techniques. As a result, the computation of the
forward-backward calculation is no longer dominant over the
entire training process, which results in very fast training. In ad-
dition, network parameters can be trained from scratch, which
means local optimum near CE-AMs can be avoided. LF-MMI
exhibited much better results than CE and CE+sMBR AMs in
many tasks [8, 10].

3. Lattice-free sSMBR

3.1. Overview

The LF-sMBR training criterion is defined similarly to the con-
ventional SMBR, as

FLFsMBR _ Z Z P(S|G",X,)A(S,GY),

u SegP

(C))

which represents the state-level expected ASR accuracy for
training data. Here, .A(S, G1Y) is the state-level accuracy of the
hypothesis S calculated on the numerator graph GY. In con-
ventional SMBR, A(, ) is usually calculated by counting the
frame-wise coincidence of the Viterbi-aligned reference state
and the hypothesis state. In LF-sMBR, we instead use a summa-
tion of posterior probabilities estimated by the numerator graph,

as
A(S,G2) =D i, ©)
t

where s(t) is the state in sequence S at time frame ¢. Then, the
error signal is calculated as

8]:LF5]\/IBR

— D 1 — n
Togwt) Vs(u,t) LA () — Au},

(6)

where

3
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A1) = Do S PSIO” XA, )
' Sscgp 05 P(SIGP, X.)
A=Y P(SIGP, Xu)A(S,G)).

segP

(D

3

The same as the case of LF-MMI, LF-sMBR uses phone 4-
gram space for denominator graph G”. Basic statistics ’Yﬁu,t)

and wé\(]u,t) are first estimated by using the forward-backward
procedure, exactly the same as LF-MMI. Then, these statis-
tics are used to compute expected accuracy A, (t) and A, by
one more forward-backward procedure on phone 4-gram space.
Therefore, the only difference between LF-sMBR and LF-MMI
is the second forward-backward procedure. The algorithm of
the second forward-backward calculation is the same as the con-
ventional sSMBR training, so we skip going into details here.
Importantly, both the first and second forward-backward cal-
culations can be implemented in a highly parallelized way by
using GPGPU techniques because the number of states is inde-
pendent of utterances. We implemented LF-sMBR by modify-
ing an LF-MMI implementation of the Kaldi toolkit [18]. In our
experimental settings (Sec 4.1.1), the second forward-backward
procedure for LF-sMBR caused just an 8-9% increase of train-
ing time compared to the original LF-MMI.

3.2. Treatment of silence in accuracy calculation

In the conventional sSMBR training, it is common practice to
evaluate Eq. (5) by only using non-silence frames according
to the reference label, which makes the training criterion in-
sensitive to insertion errors. We emulate this measure by re-
setting all posteriors for silence phones to 0 when calculating
Eq. (5). On the other hand, a recent paper [19] proposed “one-
silence-class” modification, in which all silence states (vocal-
ized noise, non-spoken noise, etc.) are summarized into one
class and counted in Eq. (5). We emulate this measure by re-
placing the posterior for each silence state into the sum of the
posteriors of all silence states.

In the experimental section, we show the results for three
cases: (1) counting all silence independently, (2) not counting
silence phones, and (3) counting silence as one-silence-class.

3.3. Regularization

Since sSMBR training is known to be sensitive to overfitting,
we introduce three types of regularization techniques for LF-
sMBR. The first and second techniques are {2 regularization and
CE regularization, both of which were introduced in the original
LF-MMI paper [8]. The /2 regularization adds a penalty term
for the squared [2-norm of the network output. CE regulariza-
tion is a technique to add one more output layer at the top of the
neural network, which is updated via CE loss criterion.

The third technique is an MMlI-based regularization that
uses a combination of LF-sMBR and LF-MMI criteria similar
to I-smoothing [20] or F-smoothing [7], as

(1= A). FLFsMBR | ) pLFMMI ©)
where ) is a scaling parameter.

Note that the leaky hidden Markov model (leaky-HMM)
technique, which adds transitions among all HMM-states, was
also proposed for LF-MMI [8] to show its effectiveness as a
regularizer. However, this technique is difficult to efficiently
implement for LF-sMBR (though it is possible for LF-MMI),
so we did not evaluate leaky-HMM for LF-sMBR.
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Figure 1: Architecture of acoustic model. A number with an
arrow indicates a time splicing index of TDNN [26].

4. Experiments
4.1. Evaluation on AMI
4.1.1. Settings

We performed our first experiment on individual headset mi-
crophone (IHM) data from the AMI meeting corpus [13]. The
training and evaluation datasets were prepared according to the
instructions in Kaldi [18]. The training data included 77 hours
of meeting speech and was augmented six times using speed
perturbation (x3)[21] and noise/reverberation perturbation (x2)
[22]. The development and evaluation data totaled 8.9 hours and
8.7 hours, respectively. A 3-gram LM trained by AMI transcrip-
tion (49K vocabulary) was used for decoding. All parameters
were tuned using the development data, and the best settings
were used for decoding the evaluation data.

We trained an acoustic model consisting of a convolutional
neural network (CNN), time-delay neural network (TDNN)
[23], and long short-term memory (LSTM) [24]. The archi-
tecture of the AM, called CNN-TDNN-LSTM, is shown in Fig.
1. Input features for the network were 40-dim Mel-frequency
cepstral coefficients (MFCCs) and 40-dim log-Mel-filterbank
(FBANK), both without normalization. In addition, a 100-dim
iVector was extracted every 100 msec and appended to the input
features for online speaker/environment adaptation [25]. The
input features were advanced by five frames, which has the
same effect as reference label delay.

In training, the AM was first trained by LFMMI and then
further trained by either conventional lattice-based sMBR or
the proposed LF-sMBR. In LFMMI training, the initial learn-
ing rate was set to 0.001 and exponentially decayed to 0.0001
by the end of the training. We applied [2-regularization and
CE-regularization [8] with scales of 0.00005 and 0.1, respec-
tively. Leaky-HMM coefficient was set to 0.1. In addition,
a backstitch technique [27] with the backstitch scale 1.0 and
backstitch interval 4 was used. In the conventional lattice-based
sMBR training, the learning rate was fixed to 0.000000125, and
the [2-regularization and cross-entropy-regularization were set
to 0.00005 and 0.1, respectively. We used “one-silence-class”
counting method [19], which showed slightly better result than
“silence-uncounting” method in our preliminary experiment.

2925

Settings for LF-sMBR are discussed in succeeding sections.

4.1.2. Baseline results with LF-MM!I and conventional sMBR

We first evaluated the accuracy of the LF-MMI and the conven-

tional lattice-based SMBR. The word error rates (WERs) with

various combinations of training epochs are presented in Table

1. The two main findings are:

e LF-MMI training showed sufficient convergence after four
epochs of iteration, and further training caused overfitting.

* Conventional sSMBR training clearly boosted the accuracy,
yielding 2-3% relative improvement over LF-MMI.

Note that, although sMBR achieved WER improvements,
its computational cost for lattice generation was quite high. Be-
cause of data augmentation * and the large size of the AM,
about 2,900 CPU-hours of computation (including I/O) was re-
quired to generate lattices for this 77-hours training data. On
the other hand, 1-epoch of sMBR training after lattice genera-
tion required just about 12 hours of computation with CPU and
GPU (NVIDIA®Tesla®P100). This primarily formed our mo-
tivation to propose LF-sMBR, which can eliminate the need to
generate lattices. Benefit of the lattice-free method becomes
much larger when the data size becomes large (such as 1,000-
10,000 hours).

Table 1: Baseline WERs (%) for AMI-IHM with LF-MMI and
conventional lattice-based sMBR training.

Criterion dev eval

LF-MMI (1-epoch) 20.71 20.32

LF-MMI (2-epoch) 19.75 19.05

LF-MMI (3-epoch) 19.08 18.61

LF-MMI (4-epoch) 19.11 1841

LF-MMI (5-epoch) 19.15 18.81

LF-MMI (6-epoch) 19.13 18.82

LF-MMI (4-epoch) — sMBR (1-epoch) 18.75 17.91
LF-MMI (4-epoch) — sMBR (2-epoch) 18.72 17.84
LF-MMI (4-epoch) — sMBR (3-epoch) 18.74 17.85

4.1.3. Effect of different treatments of silence phones

Next, we evaluated the proposed LF-sMBR training. We first
examined the effect of different treatment of silence phones in
expected error calculation (Section 3.2). In this experiment, no
regularization was applied. We used the fixed learning rate of
0.000000125 to conduct 1-epoch LF-sMBR training. *

Results are presented in Table 2. We found that uncount-
ing the silence phones was essential for LF-sMBR. In this case,
LF-sMBR achieved similar WER improvement as the conven-
tional lattice-based sMBR. Unexpectedly, the naive “counting”
method and the “one-silence counting” method were not effec-
tive for LF-sMBR while the training objective was improved
appropriately in all three cases. One possible reason for this
phenomenon is that the numerator calculation is done per model
update in LF-sMBR, which could cause severe overfitting of
silence phones. This hypothesis is partly reviewed in Section
4.1.5.

Table 2: WERs (%) for AMI-IHM using LF-sMBR with various
silence treatments in expected accuracy calculation.

Criterion Silence dev eval

LF-MMI (4-epoch) - 19.11 18.41
LF-MMI — LF-sMBR (1-epoch) count 19.11 18.41
LF-MMI — LF-sMBR (1-epoch) uncount 18.82 18.10
LF-MMI — LF-sMBR (1-epoch) one-silence count 19.13 18.46

3In addition to the speed (x3) and reverberation (x2) perturbation,
input frame shift variation (x3) was also applied in lattice generation
for sMBR in Kaldi, which largely increased the computational cost.

4We examined various learning rates in our preliminary experiments
and found that the effective range of learning rates was the same as the
case of the conventional lattice-based sMBR training.



4.1.4. Effect of regularization

We tried various regularization techniques, the results of which
are presented in Table 3. Here, we applied [2-regularization
with scales of 0.00005 and CE-regularization with scales of 0.1.
MMI-based regularization was applied with A = 0.1. The re-
sults in this table demonstrate that each regularization ({2, CE,
MMI) had a marginal effect to mitigate overfitting when iter-
ating LF-sMBR. For example, while 2-epoch LF-sMBR with-
out any regularization produced 18.22% WER, [2 regulariza-
tion mitigated the degradation to 18.14%. Although the impact
of regularization was much smaller than we expected from LF-
MMI experiments [8], the combination of three regularizations
produced the best results (18.80% and 18.04% for dev and eval).

Table 3: WERs (%) for AMI-IHM using LF-sMBR with various

regularizations.
Criterion Regularization dev eval
12 CE MMI

LE-MMI (4-epoch) 19.11 18.41
LF-MMI — LF-sMBR (1-epoch) 18.82 18.10
LF-MMI — LF-sMBR (2-epoch) 18.88 18.22
LF-MMI — LF-sMBR (1-epoch) 18.83 18.09
LF-MMI — LF-sMBR (2-epoch) v 18.83 18.14
LF-MMI — LF-sMBR (I-epoch) VA 18.83 18.06
LF-MMI — LF-sMBR (2-epoch) v 18.83 18.14
LF-MMI — LF-sMBR (1-epoch) VA 18.88 18.08
LF-MMI — LF-sMBR (2-epoch) v 18.83 18.16
LF-MMI — LF-sMBR (1-epoch) VA VA 18.86 18.06
LF-MMI — LF-sMBR (2-epoch) /  +/ v 18.80  18.04

4.1.5. Freezing numerator calculation

As pointed out in Section 4.1.3, the per-update-based calcula-
tion of numerator posteriors might be what caused the over-
fitting in LF-sMBR. To investigate this hypothesis, we tested
“freezing” the numerator posterior calculation by using original
LF-MMI AM for the numerator posterior calculation (i.e., not
by using the last LF-sMBR-updated AM). The results (listed in
Table 4) demonstrate that small improvements of WER were
achieved by freezing the numerator posterior calculation.

Table 4: WERs (%) for AMI-IHM using LF-sMBR with/without
numerator freezing.

Criterion Freeze numerator dev eval

LF-MMI (4-epoch) 19.11 18.41
LF-MMI — LF-sMBR (1-epoch) 18.86 18.06
LF-MMI — LF-sMBR (2-epoch) 18.80 18.04
LF-MMI — LF-sMBR (3-epoch) 18.83 18.07
LF-MMI — LF-sMBR (1-epoch) VA 18.80 18.07
LF-MMI — LF-sMBR (2-epoch) V4 18.73 18.02
LF-MMI — LF-sMBR (3-epoch) v 18.77 18.01

4.1.6. Balancing LF-MMI and LF-sMBR

Finally, we examined whether it is possible to conduct LF-
sMBR from an earlier stage of the LF-MMI training, the re-
sults of which are presented in Table 5. Here we conducted
two epochs of LF-sMBR training after LF-MMI training. Un-
fortunately, the best performance was obtained only when we
started the LF-sMBR training from sufficiently converged LF-
MMI AM. Better results could have been obtained if we appro-
priately set the interpolation weight between LF-MMI and LF-
sMBR, similar to a previously proposed interpolation weight
scheduling between CE and sMBR [28]. This remains our fu-
ture work.

Table 5: Effect of LF-sMBR on earlier stage of LF-MMI.

# of LF-MMI epochs ~ before LF-sMBR | after LF-sMBR
dev eval dev eval

2 19.75 19.05 19.50 18.76

3 19.08 18.61 18.88 18.25

4 19.11 18.41 18.73  18.02
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4.2. Experiments on CSJ and LibriSpeech

We also conducted evaluations on CSJ [14] and LibriSpeech
[15].

CSJ is one of the most widely used evaluation sets for
Japanese speech recognition. It consists of about 600 hours of
Japanese lecture recordings. We used the three official evalua-
tion sets, E1, E2, and E3 [29], each of which includes different
types of groups of ten lectures (5.6 hours of 30 lectures in total).
For the development set to tune the decoding parameters, we se-
lected 7.1 hours of 40 lecture recordings. The remainder of the
577 hours of lecture recordings (excluding the same speaker’s
lectures with evaluation and development sets) was used for AM
and LM training. In AM training, training data were augmented
by using speed perturbation (x3) [21]. We used 4-gram and re-
current neural network-based LMs for decoding, the details of
which are shown in [10].

Librispeech consists of about 1,000 hours of read English
speech. Training, development, and evaluation sets were pre-
pared according to the Kaldi scripts. The evaluation set con-
sisted of two groups named “clean” and “other” in accordance
with the difficulty of recognizing the speech; their durations
were 5.4 hours and 5.3 hours, respectively. Training data were
augmented by using speed perturbation (x3) [21]. We used of-
ficially provided large 4-gram LM for decoding.

For both CSJ and Librispeech, we used the same AM ar-
chitecture as in the AMI experiments. We also used the best
training parameters (learning rate, regularization, etc.) from
the AMI experiments, except for the number of iterations for
LF-MMI and LF-sMBR. For CSJ, we conducted four epochs
of LF-MMI and one epoch of LF-sMBR. For Librispeech, we
conducted two epochs of LF-MMI and 0.5 epochs of LF-sMBR.

Results for CSJ and Librispeech are presented in Tables 6
and 7, respectively. Note that decoding parameters (language
model scale, insertion penalty, etc.) for these evaluations were
all tuned by a development set. Aside from just one case of “E1
test set of CSJ with RNN-LM rescoring”, LF-sSMBR showed ~
2% relative improvements compared to LF-MMI. To the best
of our knowledge, the numbers in Tables 6 and 7 are the best
results ever reported with these data sets.

Table 6: WERs (%) for CSJ evaluation set.

Criterion El E2 E3 avg.
(4gram-LM)
LF-MMI 8.51 6.94 694 7.46
LF-MMI — LF-sMBR 841 6.72 6.86 7.33
(4gram-LM + RNN-LM rescoring)
LF-MMI 743 638 641 6.74
LF-MMI — LF-sMBR 749 622  6.16 6.62 (*)

(*) Character error rate (CER) was 5.03% (E1: 5.67%, E2: 4.90%, E3: 4.53%)

Table 7: WERs (%) for LibriSpeech evaluation set.

Criterion clean other
LF-MMI 372 8.69
LF-MMI — LF-sMBR 3.68 8.57

5. Conclusion

We proposed LF-sMBR training that enables sMBR criterion-
based training in a lattice-free manner. Instead of the redun-
dant lattice generation procedure, LF-sMBR exploits forward-
backward calculation on phone N-gram space, thus enabling
a much simpler and faster training than conventional lattice-
based sSMBR training. In our experiments on the AMI, CSJ,
and Librispeech corpora, LF-sMBR achieved small but consis-
tent improvements over LF-MMI AMs, showing state-of-the-art
results for each test set.
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