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Abstract
The recurrent neural networks (RNN) have shown promising
results in sentence matching tasks, such as paraphrase identifi-
cation (PI), natural language inference (NLI) and answer selec-
tion (AS). However, the recurrent architecture prevents parallel
computation within a sequence and is highly time-consuming.
To overcome this limitation, we propose a gated convolutional
neural network (GCNN) for sentence matching tasks. In this
model, the stacked convolutions encode hierarchical context-
aware representations of a sentence, where the gating mecha-
nism optionally controls and stores the convolutional contextual
information. Furthermore, the attention mechanism is utilized
to obtain interactive matching information between sentences.
We evaluate our model on PI and NLI tasks, and the experi-
ments demonstrate the advantages of the proposed approach in
terms of both speed and accuracy performance.

1. Introduction
Many natural language tasks involve comparing two text se-
quences and determining the semantic relationship between
them. For instance, in paraphrase identification, this compar-
ison needs to determine whether two sentences are paraphrased
[1, 2]. In natural language inference, the goal is to determine
whether a hypothesis sentence can be inferred from a premise
sentence [3, 4]. In answer selection, a question needs to be
matched against several candidate answer sentences in order to
identify the correct answer [5, 6].

With recent advances in neural network models, a straight-
forward approach for sequence modeling is to individually en-
code each sentence into a vector. Next, the two vectors are fed
into a multi-layer perceptron together to predict the results [7].
The advantage of this framework is that the model is easier to
train, and the sentence vectors can be used for visualization,
sentence clustering and many other purposes [8]. However,
there is no interaction between the two sentences during the
encoding procedure, which is not sufficient to capture match-
ing information of smaller units (such as words or phrases) be-
tween the two sentences. To overcome this disadvantage, many
prevalent studies focus on the ”compare-aggregate” framework,
where the attention mechanism is employed on smaller units
between the two sentences. In this type of framework, con-
text representation layers are used to obtain the context-aware
representations of words. Next, the context-aware vectors are
compared and matched with attention mechanisms. These com-
parison results are aggregated to make the final decision [9, 10].
The ”compare-aggregate” framework captures more interactive
features between the two sentences, which leads to significant
improvement. In state-of-the-art ”compare-aggregate” frame-
works, such as the Enhanced Sequential Inference Model (ES-
IM) [11] and the Bilateral Multi-perspective Matching (BiMP-

M) [12], the context representation layer and aggregation lay-
er are all based on long short-term memory networks (LSTM)
[13]. Despite the powerful sequence modeling ability, the re-
current structure depends on the computations of previous time
steps, and the time complexity is linearly proportional to the
sentence length.

As is well known, modern hardware is well suited to models
that are highly parallelizable. An alternative approach is to cap-
ture context dependencies with convolutional neural networks
(CNN), which enable parallelization within a sequence and are
able to gain remarkable increased speed compared to recurrent
networks. Furthermore, CNN provides a shorter path between t-
wo certain words. The context dependencies over a context win-
dow of n words require O(n/k) convolutional operations with
kernel width k, compared to O(n) operations for recurrent net-
works. To take advantage of CNN, researchers have proposed
the gated linear units (GLU) for language modeling, which im-
plement a simplified gating mechanism over the convolution
output [14]. More recently, the GLU has been introduced to
sequence to sequence learning [15], and outperforms machine
translation models based on gated recurrent units (GRU) and
LSTM [16, 17]. Inspired by the success of GLU and gating
mechanism of LSTM, we propose an improved gated convo-
lutional architecture and apply it to the ”compare-aggregate”
framework for sentence matching tasks. The proposed gated
convolutional network is equipped with output and forget gates.
The output gate modulates the outputs of the current convolu-
tion layer. Meanwhile, the contextual information created by
previous convolution layers are modulated by the forget gate
and stored in the memory cells. The gating mechanisms further
optimize the path through which information flows and lead to
better performance for sentence matching tasks.

The rest of this paper is organized as follows. In section 2,
we describe the model in detail. In section 3, we describe the
datasets and experimental setup. Section 4 presents the experi-
mental results and analysis. The summary and conclusions are
given in section 5.

2. Model
In this section, we first describe the proposed gated convolu-
tional architecture in detail and later apply it to the ”compare-
aggregate” framework. In addition, we describe the character
and part-of-speech (POS) tagging features, which can be em-
ployed as auxiliary features in addition to word embeddings.

2.1. Gated Convolutional Neural Network

The GLU proposed in [14] are described as follows:

hL
i = (hL−1

i (c) ∗W + b)� σ(hL−1
i (c) ∗V + c) (1)
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where m,n are respectively the number of input and output fea-
ture maps, k is the kernel width, and L denotes the Lth con-
volution layer. hL−1

i (c) ∈ Rm×k is the input, which comes
from the hidden states of the previous layer or input word em-
beddings. W ∈ Rm×k×n and V ∈ Rm×k×n are convolution
parameters, b ∈ Rn and c ∈ Rn are bias parameters. ∗ is the
convolution operation, σ is the sigmoid function and � is the
element-wise multiplication. In GLU, the output of each lay-
er is a linear projection hL−1

i (c) ∗W + b modulated by the
gate σ(hL−1

i (c) ∗V + c). Similar to LSTM, the gate multiply
each element of the vector hL−1

i (c) ∗W + b and control the
information passed on in the hierarchy.

To better control the path through which information flows
in the hierarchical structure, we adopt the concepts of output
and forget gates in our convolutional neural network. The ex-
pressions of the new GCNN proposed in this paper are de-
scribed as follows:

oL
i = σ(hL−1

i (c) ∗Wo + bo)

fLi = σ(hL−1
i (c) ∗Wf + bf )

gL
i = tanh(hL−1

i (c) ∗Wg + bg)

cLi = fLi � cL−1
i + (1− fLi )� hL−1

i

hL
i = oL

i � gL
i +cLi

(2)

W ∈ Rm×k×n and b ∈ Rn are learned parameters. oL
i , fLi

and cLi are respectively the output gate, forget gate and memory
cell for the ith word in layer L. The dimensions of hL−1

i and
cL−1
i must be equal. If this equality is not observed, we can

perform a linear projection to match the dimensions as follows:

cLi = fLi � cL−1
i + (1− fLi )� (Wph

L−1
i ) (3)

The memory cell of LSTM is shared by all elements in the se-
quence and is updated along with time. Different from that of
LSTM, each element has its own memory cell in GCNN, and
the memory cell is updated along with layers. The memory op-
tionally stores contextual information created by all previous
convolution layers. The forget gate fLi controls what informa-
tion from the old memory cell is going to be thrown away and
what new information is going to be stored in the current mem-
ory cell. cLi contains semantics of smaller granularity, while gL

i

contains semantics of larger granularity. For example, when the
kernel width k is set to 3, g2

i contains 5-gram features, while c2i
contains trigram features from h1

i , as well as unigram features
from c1i . We expect the output h2

i of the current layer to benefit
from unigram, trigram and 5-gram information simultaneously,
which are regulated by the forget and output gates. The memory
cell can also be viewed as a modified residual learning, which
simplifies the model training at the same time.

2.2. Convolutional Compare-Aggregate Framework

In this section, we apply the abovementioned GCNN to the
”compare-aggregate” framework. Let A = [a1, ..., ala ] and
B = [b1, ..., blb ] be a pair of input sentences of length la and
lb , respectively, and y ∈ Y be the label representing the rela-
tionship between A and B. For paraphrase identification task,
Y= {0, 1}, where y = 1 meansA andB are paraphrase of each
other, and y = 0 otherwise. For natural language inference task,
Y = {entailment, contradiction, neural}, where entail-
ment means the hypothesis sentence B can be inferred from the
premise sentence A, contradiction means the premise B cannot
be true condition on A, and neutral means A and B are ir-
relevant to each other. The convolutional ”compare-aggregate”

framework consists of five layers: word embedding layer, con-
text representation layer, comparison layer, aggregation layer,
and prediction layer.

2.2.1. Word embedding layer

In this layer, each word in A and B is represented with an
embedding of the fixed-dimensional vector, which can be ini-
tialized with word2vec [18] or GloVe [19]. The output of this
layer are two sequences of word vectors a = [a1, ...,ala ] and
b = [b1, ...,blb ].

2.2.2. Context representation layer

The purpose of this layer is to capture the contextual informa-
tion. Let ãi denote the output state generated by the multi-layer
GCNN for the ith element over the input sequence a as follows:

ãi = GCNN(a, i),∀i ∈ [1, ..., la]

b̃j = GCNN(b, j), ∀j ∈ [1, ..., lb]
(4)

2.2.3. Comparison layer

In this layer, the context representation of each word in one
sentence is compared against all words in the other sentence.
In other words, the attention mechanisms are utilized to com-
pute the alignment score between two elements from ã and b̃.
MLP attention [20] and dot-product attention [21] are the two
most commonly used attention mechanisms, where the latter is
faster and more memory-efficient than the former. We adopt
dot-product attention to compute the attention weight between
each pair of ãi and b̃i as follows:

eij = ãT
i b̃j (5)

These attention weights are normalized to compute the attention
vectors as follows:

αααi =

lb∑

j=1

exp(eij)∑lb
k=1 exp(eik)

b̃j , ∀i ∈ [1, ..., la]

βββj =

la∑

i=1

exp(eij)∑la
k=1 exp(ekj)

ãi, ∀j ∈ [1, ..., lb]

(6)

where the attention vectorαααi selects the content semantics from
b̃j that is relevant toαααi, and vice versa forβββi. The absolute dif-
ference and element-wise product are then performed to obtain
the comparison vectors [11, 22]:

ma,i = [ãi;αααi; |ãi −αααi|; ãi �αααi]

mb,j = [b̃j ;βββj ; |b̃j − βββj |; b̃j � βββj ]
(7)

The attention operation, together with the absolute differ-
ence and element-wise product operations, brings in interactive
matching information between the two sentences.

2.2.4. Aggregation layer

In this layer, we aggregate the two sequences of compari-
son vectors into a fix-dimensional vector v. We apply an-
other multi-layer GCNN to the two sequences {ma,i}lai=1

and {mb,j}lbj=1 individually and obtain the outputs va =

[va,1, ...,va,la ] and vb = [vb,1, ...,vb,lb ]. Then, we compute
both the average and max pooling vectors as well as concate-
nating them to form the vector v [11]:

v = [max(va); ave(va);max(vb); ave(vb)] (8)
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where max() is the element-wise maximum, and ave() computes
the mean of vectors.

2.2.5. Prediction layer

The purpose of this layer is to predict the probability distribu-
tion P (y|A,B). To this end, we feed v into a multi-layer per-
ceptron (MLP) classifier. The MLP has a hidden layer with
ReLU activation and an output layer with the softmax function.
The entire model is trained end-to-end with cross-entropy loss.

2.3. Character and Part-of-Speech Tagging Features

To further improve the learning and expressing ability of the
model, we can also incorporate the character-composition fea-
tures and part-of-speech tagging features into the input. The
character-composition vector is expected to encode more mor-
phological information for a word [23], and the POS tagging
feature is expected to provide syntactic information. Mean-
while, the word embeddings initialized by word2vec or GloVe
encode more semantic information. The semantic, morphologi-
cal and syntactic information are complementary to each other,
and combinations of these different information is expected to
improve the model performance.

Unlike previous work where the character-composition vec-
tors are obtained by conventional CNN or LSTM networks
[12, 24], we employ the GCNN. [c1, ..., cn] denote the char-
acters within a word, we first obtain the vectors [c1, ..., cn] by
embedding the characters into fixed-dimensional character em-
beddings, which are initialized randomly and updated during
the training. Next, a GCNN withH layers is employed on them
to obtain the outputs [cH1 , ..., cHn ]. Finally, the max pooling op-
eration is performed to obtain the character-composition vector:

c = max(cH1 , ..., c
H
n ) (9)

POS tagging is produced by lexical parser tools and subsequent-
ly mapped to one-hot vector for each word in a sentence. The
character-composition vector c and the one-hot POS vector are
concatenated with the word embedding as the input features.

3. Experimental Setup
3.1. Datasets

We evaluate our model on NLI and PI tasks, which are con-
ducted on the MultiNLI dataset1 and the Quora question pair
dataset2 respectively. MultiNLI [25] has 433k sentence pairs
annotated with textual entailment labels. It covers a range of
genres of spoken and written text, and supports a distinctive
cross-genre generalization evaluation. Half of the dev/test gen-
res appear in the training set while the remainder do not, cre-
ating in-domain (matched) and cross-domain (mismatched) de-
v/test sets. Since test set labels are not provided, the test is
performed on Kaggle.com3. The Quora question pair dataset
contains over 400k question pairs, and each question pair is an-
notated with a binary value indicating whether the two questions

1https://www.nyu.edu/projects/bowman/multinli/
2https://data.quora.com/First-Quora-Dataset-Release-Question-

Pairs
3In-domain (matched) leaderboard:

https://www.kaggle.com/c/multinli-matched-open-
evaluation/leaderboard;
Cross-domain(mismatched) leaderboard:
https://www.kaggle.com/c/multinli-mismatched-open-
evaluation/leaderboard

Table 1: MultiNLI results

Models Matched Mismatched Time(s)
Test Acc Test Acc /Epoch

CBOW [25] 64.8 64.5 –
BiLSTM [25] 66.9 66.9 –
ESIM [25] 72.3 72.1 –
CNN 75.6 74.5 1215
GLU 76.3 75.2 1650
ESIM (our implement) 76.8 75.5 9610
GCNN 76.6 75.8 2412
GCNN (char) 77.0 76.0 4020
GCNN (char+POS) 77.4 76.4 4080

Table 2: Quora question pair dataset results

Models Test Acc Time(s)/Epoch
BiMPM [12] 88.17 –
DIIN [24] 89.06 –
CNN 87.92 660
GLU 88.32 692
ESIM (our implement) 87.65 4038
GCNN 88.66 870
GCNN (char) 88.94 1740
GCNN (char+POS) 89.35 1770
GCNN - forget gate 88.33 690
GCNN - output gate 88.35 702

are paraphrases of each other. We use the same train/dev/test s-
plit as mentioned in previous research [12].

3.2. Training

We implement our models on Tensorflow [26] and train them on
an Nvidia GeForce GTX 1080 GPU. We initialize the word em-
beddings with 300-dimensional GloVe word vectors pretrained
from 840B Common Crawl corpus [19]. Out-of-vocabulary
(OOV) words are randomly initialized. We initialize each
character as a 40-dimensional vector and compose the 100-
dimensional character-composed vector for each word with a
2-layer GCNN. The POS tagging feature for each word is a
47-dimensional one-hot vector. Our model has 4 convolution
layers in the context representation layer and 2 layers in the ag-
gregation layer. The hidden size of each convolution layer is
set to 300. The sequence length is set as a hard cutoff on all
experiments, with 60 for premise sentences and 30 for hypoth-
esis sentences on MultiNLI and 40 for sentences on the Quora
dataset. The Adam algorithm [27] is adopted as optimizer. The
initial learning rate is 0.0004, and the batch size is 64. For all
the experiments, we pick the model which works best on the
dev set, and then evaluate it on the test set.

4. Results and Model Analysis
The experiment results are listed in Table 1 and Table 2, where
GCNN is the proposed model with only word embedding in-
puts, GCNN (char) is additionally equipped with character fea-
tures on the basis of GCNN, and GCNN (char+POS) is addi-
tionally equipped with both character and part-of-speech tag-
ging features. We also implement the ESIM on Tensorflow. In
Table 1, we also list the results reported in the dataset paper
[25]. From Table 1, it can be observed that the training speed of
GCNN is clearly faster than that of ESIM. Furthermore, GC-
NN performs nearly equal to ESIM in terms of accuracy on
MultiNLI dataset. The accuracy is further improved when in-
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corporating additional character features into the inputs, which
shows the effectiveness of character features. Similar conclu-
sions can be drawn for part-of-speech tagging features. To bet-
ter demonstrate the advantage of GCNN, we also replace the
GCNN with conventional CNN; namely, we replace equation
(2) with hL

i = ReLU(hL−1
i (c) ∗Wc + bc)+hL−1

i . It can be
found that CNN is inferior to GCNN in terms of accuracy. We
also replace the GCNN with GLU. It can be found that GCNN
performs better than GLU in terms of accuracy.

In Table 2, the results again demonstrate the superiority of
our approach. Furthermore, GCNN performs better than ES-
IM in terms of accuracy on Quora dataset. We also compare
our model with BiMPM [12] and Densely Interactive Inference
Network (DIIN) [24], which are published state-of-the-art re-
sults on this dataset. BiMPM also employs the characters in
addition to word embeddings, where the character-composed
vectors are constructed via LSTM. Table 2 shows that GCN-
N outperforms BiMPM even without character features. DIIN
solve sentence matching tasks by extracting semantic features
from the interaction tensor with DenseNet [28]. DIIN also in-
corporates character features and one-hot POS tagging features
into the inputs. It can be observed that our GCNN (char+POS)
outperforms DIIN on the Quora dataset. To further analyze the
importance of forget and output gates, we also show the ablation
performance of GCNN, with only word embedding inputs. In
”GCNN - forget gate”, we remove the forget gate, namely, re-
placing hL

i = oL
i � gL

i +cLi with hL
i = oL

i � gL
i +hL−1

i . The
performance drops to 88.33% with this replacement. In ”GCNN
- output gate”, we replace it with hL

i = gL
i +cLi . We adopt Re-

LU activation for gL
i instead of tanh in this replacement, since

ReLU performs better than tanh when there is no output gate. It
shows that the performance drops to 88.35% without the output
gate. The ablation results show that both the forget and output
gates contribute to the model performance.

5. Conclusion
In this paper, we propose a new gated convolutional network
and apply it to the ”compare-aggregate” framework. Compared
to recurrent neural networks, the convolution operations allow
parallel computation within a sequence. Meanwhile, the hierar-
chical architecture makes it easier to capture long-range depen-
dencies. Furthermore, the gating mechanism makes the network
able to optionally allow information flow through the hierar-
chical structure. Experiments on standard benchmark datasets
show the effectiveness of our model in terms of both accuracy
and computation speed.
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