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Abstract
In this work, we investigate the joint use of articulatory and
acoustic features for automatic speech recognition (ASR) of
pathological speech. Despite long-lasting efforts to build
speaker- and text-independent ASR systems for people with
dysarthria, the performance of state-of-the-art systems is still
considerably lower on this type of speech than on normal
speech. The most prominent reason for the inferior performance
is the high variability in pathological speech that is character-
ized by the spectrotemporal deviations caused by articulatory
impairments due to various etiologies. To cope with this high
variation, we propose to use speech representations which uti-
lize articulatory information together with the acoustic prop-
erties. A designated acoustic model, namely a fused-feature-
map convolutional neural network (fCNN), which performs fre-
quency convolution on acoustic features and time convolution
on articulatory features is trained and tested on a Dutch and
a Flemish pathological speech corpus. The ASR performance
of fCNN-based ASR system using joint features is compared
to other neural network architectures such conventional CNNs
and time-frequency convolutional networks (TFCNNs) in sev-
eral training scenarios.
Index Terms: pathological speech, automatic speech recog-
nition, articulatory features, convolutional neural networks,
dysarthria

1. Introduction
Speech disorders causing deviations in articulation lead to de-
creased speech intelligibility and communication impairment
[1]. Recent developments show that therapy can be provided by
employing computer-assisted speech training systems [2]. Ac-
cording to the outcomes of the efficacy tests presented in [3],
user satisfaction towards such a system appears to be quite high.
However, most of these systems are not yet capable of auto-
matically detecting problems at the level of individual speech
sounds, which are known to have an impact on speech intelli-
gibility [4–8]. Our goal is to develop robust automatic speech
recognition (ASR) systems for pathological speech and incor-
porate the ASR technology to detect these problems.

Training robust acoustic models to capture the within- and
between-speaker variation in dysarthric speech is generally
not feasible due to the limited size and structure of existing
pathological speech databases. The number of recordings in
dysarthric speech databases is much smaller compared to that
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in normal speech databases. Despite long-lasting efforts to
build speaker- and text-independent ASR systems for people
with dysarthria, the performance of state-of-the-art systems is
still considerably lower on this type of speech than on normal
speech [9–17].

In previous work [18], we described a solution to train a bet-
ter DNN-hidden Markov model (HMM) system for the Dutch
language, a language that has fewer speakers and resources
compared to English. In particular, we investigated combining
non-dysarthric speech data from different varieties of the Dutch
language to train more reliable acoustic models for a DNN-
HMM ASR system. This work was conducted in the framework
of the CHASING project1, in which a serious game employing
ASR is being developed to provide additional speech therapy to
dysarthric patients [19]. Moreover, we created a 6-hour Dutch
dysarthric speech database that had been collected in a previous
project (EST) [20] for training purposes and investigate the im-
pact of multi-stage DNN training for pathological speech [21].

Using articulatory features (AF) together with acoustic fea-
tures has been investigated and shown to be beneficial in the
ASR of normal speech, e.g. [22–27]. A subset of these ap-
proaches learn a mapping between acoustic and articulatory
spaces for the speech inversion, and use the learned articu-
latory information in an ASR system for improved represen-
tation of speech in a high-dimensional feature space. Rudz-
icz [28] tried using AF together with conventional acoustic fea-
tures for phone classification experiments on dysarhtric speech.
More recently, [29] has proposed the use of convolutional neu-
ral networks (CNN) for learning speaker independent articula-
tory models for mapping acoustic features to the corresponding
articulatory space. Later, a novel acoustic model designed to
integrate the AF together with the acoustic features has been
proposed [30].

In this work, we investigate the joint use of articulatory and
acoustic features for the ASR of pathological speech. Specif-
ically, we explore the use of vocal tract constriction variables
(TVs) and standard filterbank features as input to fused-feature-
map CNN (fCNN) acoustic models as described in [30]. In-
corporating articulatory information in the features for the ASR
of pathological speech is expected to increase the robustness
against increased spectrotemporal deviations due to reduced ar-
ticulatory capabilities of the speakers. To investigate the impact
of articulatory knowledge for ASR of pathological speech, we
train fCNN acoustic models using the concatenated acoustic
and articulatory features and evaluate the ASR performance on
two different pathological speech corpora with varying levels of
dysarthria. The performance of this system is compared to other
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NN-based acoustic models such as conventional deep neural
networks (DNN), CNN and time-frequency CNNs (TFCNN).

The rest of the paper is organized as follows. Section 2 ex-
plains the selection of various speech corpora for the proposed
training scheme. Section 3 describes how the AFs are extracted
and used in an ASR system. Section 4 summarizes the acoustic
models used in this work. The experimental setup is described
in Section 5 and the recognition results are presented in Section
6. Section 7 concludes the paper.

2. Speech corpora selection
Given the limited availability of dysarthric speech data, we in-
vestigate to what extent already existing databases of Dutch nor-
mal speech can be employed to train NN-based acoustic mod-
els and optimize their performance on dysarthric speech. There
have been multiple Dutch-Flemish speech data collection ef-
forts [31, 32] which facilitate the integration of both Dutch and
Flemish data in the present research. For training purposes, we
used the CGN corpus [31], which contains representative col-
lections of contemporary standard Dutch as spoken by adults in
the Netherlands and Flanders. The CGN components with read
speech, spontaneous conversations, interviews and discussions
are used for acoustic model training. The duration of the nor-
mal Dutch (NL) and Flemish (FL) speech data used training is
255 and 186.5 hours respectively. The combined training data
(FL+NL) contains 441.5 hours in total.

The EST Dutch dysarthric speech database [20] contains
dysarthric speech from ten patients with Parkinson’s Disease
(PD), four patients who have had a Cerebral Vascular Acci-
dent (CVA), one patient who suffered Traumatic Brain Injury
(TBI) and one patient having dysarthria due to a birth defect.
Based on the meta-information, the age of the speakers is in
the range of 34 to 75 years with a median of 66.5 years. The
level of dysarthria varies from mild to moderate. The dysarthric
speech collection for this database was achieved in several ex-
perimental contexts. The speech tasks presented to the patients
in these contexts consist of numerous word and sentence lists
with varying linguistic complexity. The database includes 12
Semantically Unpredictable Sentences (SUSs) with 6- and 13-
word declarative sentences, 12 6-word interrogative sentences,
13 Plomp and Mimpen sentences, 5 short texts, 30 sentences
with /t/, /p/ and /k/ in initial position and unstressed syllable, 15
sentences with /a/, /e/ and /o/ in unstressed syllables, produc-
tion of 3 individual vowels /a/, /e/ and /o/, 15 bisyllabic words
with /t/, /p/ and /k/ in initial position and unstressed syllable and
25 words with alternating vowel-consonant composition (CVC,
CVCVCC, etc.).

For testing purposes, we firstly use the sentence read-
ing tasks of the CHASING01 Dutch dysarthric speech
database [21]. This database contains speech of 5 patients who
participated in speech training experiments and were tested at
6 different times during the treatment. For each set of audio
files, the following material was collected: 12 SUSs, 30 /p/, /t/,
/k/ sentences in which the first syllable of the last word is un-
stressed and starts with /p/, /t/ or /k/, 15 vowel sentences with
the vowels /a/,/e/ and /o/ in stressed syllables, appeltaarttekst
(apple cake recipe) in 5 parts. Utterances that deviated from the
reference text due to pronunciation errors (e.g. restarts, repeats,
hesitations, etc.) were removed. After this subselection, the ut-
terances from 3 male patients remained and were included in
the test set. These speakers are 67, 62 and 59 years old, two of
them having PD and the third having had a CVA.

All sentence reading tasks with annotations from the CO-

PAS pathological speech corpus [33], namely 2 isolated sen-
tence reading tasks, 11 text passages with reading level diffi-
culty of AVI 7 and 8 and Text Marloes, are also included as a
second test set. The COPAS corpus contains recordings from
122 Flemish normal speakers and 197 Flemish speakers with
speech disorders such as dysarthria, cleft, voice disorders, la-
ryngectomy and glossectomy. The dysarthric speech compo-
nent contains recordings from 75 Flemish patients affected by
Parkinson’s disease, traumatic brain injury, cerebrovascular ac-
cident and multiple sclerosis who exhibit dysarthria at different
levels of severity. Containing more speakers with more diverse
etiologies, performing ASR on this corpus is found to more
challenging compared to the CHASING01 dysarthric speech
database (c.f. the ASR results in [18] and [21]).

3. Extracting Articulatory Features
The task of estimating the articulatory trajectories (in this case,
the vocal tract constriction variables (TVs)) from the speech sig-
nal is commonly known as speech-to-articulatory inversion or
simply speech-inversion. TVs [34,35] are continuous time func-
tions that specify the shape of the vocal tract in terms of con-
striction degree and location of the constrictors. During speech-
inversion, the acoustic features extracted from the speech signal
are used to predict the articulatory trajectories, where the in-
verse mapping is learned by using a parallel corpus containing
acoustic and articulatory pairs. The task of speech-inversion is
a well-known, ill-posed inverse transform problem, which suf-
fers from both the non-linearity and non-unique nature of the
inverse transform [36, 37].

The articulatory dataset used to train the speech-inversion
systems consists of synthetic speech with simultaneous tract
variable trajectories. We used the Haskins Laboratories’ Task
Dynamic model (TADA) [38] along with HLsyn [39] to gener-
ate a synthetic English isolated word speech corpus along with
TVs. Altogether 534 322 audio samples were generated (ap-
proximately 450 h of speech), out of which 88% of the data was
used as the training set, 2% was used as the cross-validation
set, and the remaining 10% was used as the test set. We further
added fourteen different noise types (such as babble, factory
noise, traffic noise, highway noise, crowd noise, etc.) to each
of the synthetic acoustic waveforms with a signal-to-noise ratio
(SNR) between 10 and 80 dB. We combined this noise-added
data with the clean data, and the resulting combined dataset is
used for learning a CNN-based speech inversion system. For
further details, we refer the reader to [29].

In this work, we use speech subband amplitude mod-
ulation features such as normalized modulation coefficients
(NMCs) [40]. NMCs are noise-robust acoustic features ob-
tained from tracking the amplitude modulations (AM) of fil-
tered subband speech signals in the time domain. The features
are Z-normalized before being used to train the CNN models.
Further, the input features are contextualized by splicing mul-
tiple frames. Given the linguistic similarity between English
and Dutch, we assume that the speech inversion model trained
on English speech would give a reasonably accurate acoustic-
to-articulatory mapping in Dutch. For a detailed comparison of
the articulatory setting in Dutch and English, please see Section
21 of [41].

4. Acoustic Models
The acoustic and articulatory (concatenated) features are fed
to a fused-feature-map convolutional neural network (fCNN)
which is illustrated in Figure 1. This architecture uses two types
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Figure 1: A fused-feature-map convolutional neural network (fCNN) [30]

of convolutional layers. The first convolutional layer operates
on the acoustic features, which are the filterbank energy fea-
tures, and performs convolution across frequency. The other
convolutional layer operates on AFs, which are the TV trajec-
tories, and performs convolution across time. The output of
the max-pooling layers are fed to a single NN after performing
feature-map fusion.

Time-frequency convolutional nets (TFCNN) are also a
suitable candidate for the acoustic modeling of dysarthric
speech. Performing convolution both on time and frequency
axes, they exhibit increased robustness against the spectrotem-
poral deviations due to background noise [42]. In the scope
of this work, we use these models as one of the alternative
ASR systems without delving into their advantages compared
to other NN architectures. This investigation remains as a fu-
ture work. We further train baseline DNN and CNN models
using filterbank features as these architectures are found to pro-
vide worse recognition performance using the concatenated fea-
tures [30].

5. Experimental Setup
5.1. Database details

The CGN components with read speech, spontaneous conversa-
tions, interviews and discussions were used for acoustic model
training. The duration of the normal Flemish (FL) and north-
ern Dutch (NL) speech data used for training is 186.5 and 255
hours, respectively.

The EST Dutch dysarthric speech database (Dys. NL) con-
tains 6 hours and 16 minutes of dysarthric speech material from
16 speakers [20]. The speech segments with pronunciation er-
rors (e.g. restarts, repeats, hesitations, etc.) were excluded from
the training set to maintain integrity of the results on ASR per-
formance evaluation. Additionally, the segments including a
single word and pseudoword were also excluded, since the sen-
tence reading tasks are more relevant in our project context. The
total duration of the dysarthric speech data eventually selected
for training is 4 hours and 47 minutes.

For testing purposes, we use two databases: (1) The CHAS-
ING01 Dutch dysarthric speech data which contains 721 utter-
ances (in total 6231 words) spoken by 3 dysarthric speakers
with a total duration of 55 minutes, (2) The Flemish COPAS
database which contains 212 different sentence tasks uttered by
103 dysarthric and 82 normal speakers. The sentence tasks ut-
tered in the Flemish corpus by normal speakers (SentNor) and

speakers with disorders (SentDys) consists of 1918 (15,149)
and 1034 (8287) sentences (words) with a total duration of 1.5
and 1 hour, respectively.

5.2. Implementation Details

We use CNNs for training speech inversion models, where con-
textualized (spliced) acoustic features in the form of NMCs are
used as input, and the TV trajectories were used as the targets.
The network parameters and the splicing window were opti-
mized by using a held-out development set. The convolution
layer of the CNN had 200 filters, where max-pooling was per-
formed over three samples. The CNN has three fully connected
hidden layers with 2048 neurons in each layer. For further de-
tails, we refer the reader to [29].

For ASR experiments, a conventional context dependent
GMM-HMM system with 40k Gaussians was trained on the
39-dimensional MFCC features including the deltas and delta-
deltas. We also trained a GMM-HMM system on the LDA-
MLLT features, followed by training models with speaker adap-
tive training using FMLLR features. This system was used to
obtain the state alignments required for NN training. The input
features to the acoustic models are formed by using a context
window of 17 frames (8 frames on either side of the current
frame).

The acoustic models were trained by using cross-entropy
(CE) on the alignments from the GMM-HMM system. The 40-
dimensional log-mel filterbank (FB) features with the deltas and
delta-deltas are used as acoustic features which are extracted us-
ing the Kaldi [43] toolkit. The NN models are implemented in
Theano. The NNs trained on dysarthric Dutch training data has
4 hidden layers, with 1024 nodes per hidden layer. The NNs
trained on normal Dutch and Flemish data has 6 hidden lay-
ers, with 2048 nodes per hidden layer, and the output layer in-
cluded as many nodes as the number of CD states for the given
dataset. The networks were trained by using an initial four
iterations with a constant learning rate of 0.008, followed by
learning-rate halving based on cross validation error decrease.
Training stopped when no further significant reduction in cross-
validation error was noted or when cross-validation error started
to increase. Back-propagation was performed using stochastic
gradient descent with a mini-batch of 256 training examples.
All ASR systems use the Kaldi decoder.

For CNN, TFCNN and fCNN, the acoustic space is learned
using a 200 convolutional filters of size 8 were used in the
convolutional layer, and the pooling size was set to 3 without
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Table 1: Word error rates in % obtained on the Dutch test set
using different acoustic models

AM Features Train. Data WER (%)
DNN FB Dys. NL 22.9
CNN FB Dys. NL 21.1

TFCNN FB Dys. NL 20.3
fCNN FB + TV Dys. NL 19.1
DNN FB Nor. NL 15.0
CNN FB Nor. NL 14.9

TFCNN FB Nor. NL 14.1
fCNN FB + TV Nor. NL 15.0

overlap. For fCNN, the articulatory space is learned by using
a time-convolution layer that contains 75 filters, followed by
max-pooling over 5 samples. Further implementation details
about the NN parameters are available in [30].

5.3. ASR experiments

We use two training setups for each test set during the ASR
experiments. For the Dutch test data, the ASR system is ei-
ther trained on normal or dysarthric Dutch speech. Training on
combination of these databases has yielded very similar results
to the system trained only the normal Dutch data in the pilot
experiments. Therefore, we do not consider this training setup
in this paper.

For Flemish test data, we use normal Flemish and Dutch
speech due to lack of training material in this language variety.
In the first setting, we only use normal Flemish speech to train
acoustic models, while both normal Flemish and Dutch speech
is used in the second setting motivated by the improvements re-
ported in [20]. The recognition performance of all ASR systems
is quantified using the Word Error Rate (WER).

6. Results and Discussion
The ASR results obtained on the Dutch test set are presented
in Table 1. The WERs provided by different acoustic models
trained on the dysarthric Dutch speech are given in the upper
panel of this table. The best ASR performance of each panel
is marked in bold. Only using 6 hours of in-domain speech,
the designated ASR system using both the acoustic and articu-
latory features provides the best ASR performance with a WER
of 19.1%. The CNN and TFCNN models trained on filterbank
features provide a WER of 21.1% and 20.3% respectively.

The ASR performance of the acoustic models trained on
normal Dutch speech is given in the lower panel. In this sce-
nario, the TFCNN model has the best performance with a WER
of 14.1%, while the other systems provide comparable recogni-
tion accuracies. In this training setting, in which we use large
amount of mismatched data for the ASR of mild-to-moderate
pathological speech, using articulatory information does not
turn out to be bring further improvements compared to an or-
dinary CNN model.

We test the proposed recognition scheme on the Flemish
corpus which contains speech data from much more dysarthric
speakers (103 speakers compared to the 3 of the Dutch corpus).
The ASR results obtained on the Flemish test set are presented
in Table 2. In the Flemish test set, we also present the per-
formance on the control data which contains similar sentence
tasks uttered by normal speakers. In the first training scenario,
we only use normal Flemish speech. The fCNN model provides
a WER of 32.2% which is considerably better than the 33.8%
of TFCNN and 33.5% of CNN models. Consistent with [18],

Table 2: Word error rates in % obtained on the Flemish test sets
using different acoustic models

AM Features Train. Data SentDys SentNor
DNN FB Nor. VL 36.4 6.0
CNN FB Nor. VL 33.5 5.3

TFCNN FB Nor. VL 33.8 5.3
fCNN FB + TV Nor. VL 32.2 5.0
DNN FB Nor. VL + Nor. NL 32.1 5.5
CNN FB Nor. VL + Nor. NL 30.1 4.9

TFCNN FB Nor. VL + Nor. NL 30.1 4.9
fCNN FB + TV Nor. VL + Nor. NL 29.0 4.9

when we add normal Dutch speech to the training data, we get
a general improvement in the ASR performance on the Flemish
test set. The fCNN model outperforms the other models with a
WER of 29.0%.

Even though there is still a large gap with the performance
on the control data, using articulatory features with a designated
NN architecture provides consistently improved ASR perfor-
mance on the Flemish test set which contains speech from 103
dysarthric speakers. In general, these results demonstrate the
potential of jointly using AFs and acoustic features against the
spectrotemporal deviations in the pathological speech.

7. Conclusions
In this work, we investigate incorporating articulatory and
acoustic features jointly in the ASR of pathological speech. The
ASR systems operating on this kind of speech suffers from the
increased speech variation due to the poor articulation capabili-
ties of the speakers. We explore the impact of using articulatory
information in a ASR system by training various acoustic mod-
els in several scenarios and testing on a Dutch and a Flemish
pathological speech corpus. The results demonstrate that us-
ing AF features brings improvements using a limited amount
of in-domain training data. Moreover, we observed consis-
tent improvements in the ASR performance in more challenging
testing conditions with considerably higher number of speakers
with a speech pathology originating from more diverse etiolo-
gies.
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