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Abstract
A common issue in coding speech and audio in the frequency
domain, which appears with decreasing bitrate, is that quanti-
zation levels become increasingly sparse. With low accuracy,
high-frequency components are typically quantized to zero,
which leads to a muffled output signal and musical noise. Band-
width extension and noise-filling methods attempt to treat the
problem by inserting noise of similar energy as the original sig-
nal, at the cost of low signal to noise ratio. Dithering methods
however provide an alternative approach, where both accuracy
and energy are retained. We propose a hybrid coding approach
where low-energy samples are quantized using dithering, in-
stead of the conventional uniform quantizer. For dithering, we
apply 1 bit quantization in a randomized sub-space. We further
show that the output energy can be adjusted to the desired level
using a scaling parameter. Objective measurements and listen-
ing tests demonstrate the advantages of the proposed methods.
Index Terms: speech and audio coding, dithering, noise filling,
perceptual coding, 1 bit quantization.

1. Introduction
State-of-the art codecs, such as 3GPP Enhanced Voice Services
(EVS) and MPEG Unified speech and audio coding (USAC) use
frequency domain coding in their intermediate and high bitrate
ranges, but revert to time-domain coding at lower bitrates [1–3].
The reason is that the scalability of frequency-domain codecs in
terms of coding efficiency at low bitrates remains a bottleneck
even if they provide several other advantages such as low algo-
rithmic complexity. A symptom of the issue is that frequency-
domain codecs tend to quantize low-energy areas to zero, which
further reduces their energy. This leads to a muffled character
in the quantized output, since high-frequency components often
have low energy and are thus zeroed (see Fig. 1).

The problem of uniform quantization, in the conventional
application, is that if the quantization bins are zero-centered,
then the energy of the quantized signal decreases with decreas-
ing accuracy. Alternatively, with off-center quantization we can
retain the average energy, but are limited in bit-rate to above
1 bit/sample, since we have to transmit the sign. Moreover,
at the extreme, at low bitrates, non-zero values can require so
many bits to encode in the entropy coder, that we cannot ever
afford to transmit them. Entropy coding with uniform quantiza-
tion therefore does not scale well to bitrates below 1 bit/sample.

This problem has been addressed in prior works primarily
with two approaches. Firstly, we can encode high-frequency re-
gions with bandwidth extension methods, where the objective is
to retain the spectral magnitude envelope of the original signal,
but sacrifice phase-information and other fine-structure, such
that bitrate is limited [3–6]. Sometimes such methods also copy
spectral structures from lower frequencies (copy-up) since the
fine-structures are generally similar. Secondly, with a method
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Figure 1: Mean energy of perceptually weighted and normal-
ized MDCT-spectra over the TIMIT database, for original sig-
nal (thick line), conventional quantization (dotted), dithered
(dashed), as well as dithered in combination with Wiener fil-
tering (crosses) and matching energy (thin line). Quantization
was scaled to match a bitrate of 13.2 kbit/s.

known as noise filling, we can insert noise in areas of the spec-
trum which have been quantized to zero such that absence of
energy is avoided [7]. A recent improvement, known as intel-
ligent gap filling, combines these methods by using both noise
filling and copy-up [8]. All three approaches thus aim to retain
energy at a similar level as the original signal, but they do not
optimize signal-to-noise ratio.

Classical dithering algorithms however also include meth-
ods which can retain the signal distribution without reduction
in signal to noise ratio [9]. Common dithering methods such
as Floyd-Steinberg, are based on error-diffusion or randomiza-
tion of quantization levels, such that quantization errors can be
diffused without loss in accuracy [10]. Alternatively, we can
modify quantization bin locations to retain the probability dis-
tribution of the original signal even after quantization and cod-
ing [11] or use lattice quantization to pack quantization more
densely [12]. These approaches however do not address the
issue of very low bitrates, where we cannot afford to encode
anything else than the most likely quantization bin. Algebraic
coding can be used also at very low bitrates, but its output is also
very sparse and it is not applicable on all bitrates [3, 13]. A fur-
ther alternative would be vector coding, which provides optimal
coding efficiency also at very low bitrates. However, vector cod-
ing approaches are not easily scalable across bitrates. Moreover,
their computational complexity becomes prohibitively high at
higher bitrates and if the vector length is high [3, 14]. Vector
coding is thus also not a scalable approach.

In our recent works, we have presented an alternative
method using dithered quantization, where the input signal is
multiplied with a random rotation before quantization such that
the quantization levels are obscured when the rotation is in-
verted for the output signal [15]. A similar approach is applied
in the Opus codec [16], though only with Givens-rotations with-
out permutations. We can thus apply simple quantization such
as 1 bit quantization to obtain high performance at low com-
plexity and very low bitrates [17]. The proposed randomized
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quantization methods are unique in the way they allow quan-
tization and coding of signals without a lower limit on bitrate,
while simultaneously providing the best SNR per bit ratio. Con-
currently, the proposed methods provide the benefits of vector
coding by joint processing of multiple samples, without signifi-
cant penalty on complexity.

In this paper we present an application of the proposed ran-
domization for dithered quantization in frequency-domain cod-
ing of speech and audio, to allow coding at very low bitrates
without excessive sparseness or low energy in the output. The
central novelty is a hybrid structure where dithering is applied to
low-energy samples and uniform quantization with arithmetic
coding elsewhere. Perceptual listening tests demonstrate that
the proposed dithered quantizer gives the best performance.

2. Quantization Methods
Our objective is to study the performance of dithered quantiza-
tion methods in comparison to conventional uniform quantiza-
tion, and in combination with entropy coding. In the TCX mode
of EVS [1, 18], entropy coding and uniform quantization is im-
plemented assuming that the sample distribution is Laplacian,
and the sample variance is estimated using the linear predictive
envelope. The quantization accuracy is determined in a rate-
loop such that the bit-budget is used as effectively as possible.
In a vector of samples, trailing zeros are truncated. The scal-
ing of the signal is determined after quantization, such that the
output signal-to-noise ratio is optimized. We will use this im-
plementation of uniform quantization as our baseline system.

We have recently proposed an approach for dithering and
encoding data at low bit-rates (less than 1 bit/sample), based on
random rotations and which is defined as follows [15]. Suppose
we have a vector x ∈ RN×1, which we want to encode with
B ≤ N bits. Using a random orthonormal matrix A, known at
both the encoder and decoder, we can then quantize

x̂ = ATQB [Ax], (1)

where QB [·] is a quantizer defined as

QB [y] := γ




sign(y0)
sign(y1)

...
sign(yB−1)

0
...
0




(2)

and γ is a scaling coefficient. In other words, it uses a 1 bit-
quantizer, where the B first samples are quantized with the sign
of the input sample, for a total bitrate of B. The quantized x̂
then has an approximately normal distribution and the variance
is E[|x̂|2] = γ2 B

N
. We have furthermore shown that the or-

thonormal matrix A can be approximated by a low-order rota-
tion such that the algorithmic complexity is linear O(N) [15].

We can then readily show that γ can be chosen according
to a number of criteria, for example:

1. γMMSE = σ
√

2
π

is the minimum mean square error

(MMSE) scaling for normal input of variance σ2. This
thus corresponds to Wiener filtering the quantized signal.

2. γσ2 = σ
√

N
B

retains the variance σ2 (i.e. energy match-
ing) of the original signal. This corresponds to quantiza-
tion on the surface of an N -dimensional hyper-sphere,
which is normalized to original energy.
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Figure 2: Diagram of the speech and audio encoder. The gray
box is modified in the current work.

Clearly, γ can thus be tuned according to perceptual criteria, for
a balance between accuracy and how well the quantizer retains
the signal distribution and variance.

This approach to quantization provides error-diffusion sim-
ilar to Floyd-Steinberg -type methods. However, in difference,
the error is not diffused forward to following components, but
instead, it is diffused among the samples of a vector. In sig-
nal processing terms, Floyd-Steinberg -type methods are thus
similar to infinite impulse responses (IIR) filters, whereas the
proposed method is more like a finite impulse response (FIR)
operation.

3. Speech and Audio Coding Framework
To evaluate the error characters of different quantizers, we need
to implement them in a speech and audio codec which allows
a fair comparison. This task is less straightforward than one
might expect. The main issue is that codecs regularly use
ad hoc tricks to overcome saturation effects of the arithmetic
coder [1, 3, 18]. Namely, for example, high-frequency sam-
ples quantized to zero are typically truncated from the spectrum
above the last non-zero sample. By omitting the transmission of
zero samples we can save a considerable amount of bits, which
can instead be used for coding low-frequency components. The
performance of the arithmetic coder, in isolation, does therefore
not accurately reflect the performance of the overall codec.

To obtain a fair comparison, we will therefore implement a
state-of-the-art baseline system following the simplified struc-
ture of the 3GPP Enhanced Voice Services (EVS) [1, 3, 18]
(see Fig. 2). For frequency-domain coding, we use here the
MDCT-transform with a window length of 30 ms, 50 % over-
lap, a half-sine window and pre-emphasis with a filter P (z) =
1 − 0.68z−1. At a sampling rate of 16 kHz, the magnitude
envelope is modeled with a linear predictive model of order
M = 20, which we use as an estimate of the variance of each
frequency component, and which is further fed into a conven-
tional arithmetic coder with an assumption of a Laplacian dis-
tribution. We apply quantization in the perceptually weighted
domain as in [3]. Note that we did not implement a deadzone-
quantizer, even if it is known to improve signal-to-noise ra-
tio [7], because it also amplifies the saturation effect at high fre-
quencies. A deadzone-quantizer would therefore have unfairly
penalized the baseline codec in terms low-rate performance.

Conventional codecs include noise-fill and bandwidth-
extension methods to reduce the bitrate and to compensate for
the energy-loss at high frequencies. To allow a straightfor-
ward and fair comparison between methods, we did not include
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Figure 3: Hybrid coding of spectral components.

bandwidth-extension in the codec. Our noise-fill algorithm is
applied at frequencies above 1.6 kHz, on all spectral compo-
nents which are quantized to zero, where we add noise with a
random sign, and adjust the magnitude to match that obtained
with the proposed dithering method with gain γMMSE . The
noise-fill used in EVS uses advanced signal analysis to fine-
tune noise-filling, but but we chose this simplified method to
make the test easy to reproduce. All parameters should anyway
be tuned to the particular configuration of the final codec and
thus further perceptual tuning of parameters is not worthwhile
for these experiments.

For the bitrate of the codec, we assume that spectral enve-
lope, gain and other parameters are encoded with 2.6 kbits/s and
thus the remaining bits can be used for encoding the spectrum.
Further, for simplicity and reproducability, we did not quantize
any other parameters of the signal. It should be noted, however,
that bitrate calculations in this paper are provided only to assist
the reader in getting a realistic impression of performance, as
the bitrate of side-information can vary in particular implemen-
tations of codecs.

4. Proposed Hybrid Coder
The combination of uniform quantization and arithmetic coder
saturates at low bitrates and hence we propose to replace the
conventional approach by dithered coding for spectral samples
whose bitrate is below 1 bit/sample. It is thus a hybrid en-
tropy coder, which uses uniform quantization and arithmetic
coding following [18] in high-energy areas of the spectrum and
dithered coding at the low-energy areas.

The baseline entropy coder uses the linear predictive enve-
lope to estimate the variance σ2

k of frequency components [18].
Note that this envelope has to be scaled such that the expected
bitrate of a signal which follows that envelope, matches the
target bitrate. Based on the variance σ2

k of the kth compo-
nent, we can then estimate the expected bitrate of a sample
as bk = 1

2
log2(4.1159σ

2
k) but limited to bk ≥ 0. For spec-

tral components with bk > 1 we use uniform quantization and
arithmetic coding, for bk we apply dithered coding (see Fig. 3).
The bit-allocation between uniform and dithered quantization is
derived directly from the expected bitrate bk.

We thus collate all low-energy samples into a vector x and
quantize them with Eq. 1. Implicitly, we thus assume that vector
x follows the normal distribution with uniform variance. To
improve accuracy, we could further subdivide x according to
their variance, but such modifications are left for further study.

In [15], we have demonstrated that the randomization ma-
trixA of sufficient quality can be readily generated with 4 itera-
tions ofN/2 random 2×2 rotations and lengthN permutations,
when the bitrate is B = N . However, with B � N , a major-
ity of samples are zeros, and therefore we increased the number
of iterations to 8 such that the output distribution remains nor-
mal. Random rotations between the non-zero and zeroed values
could be readily used to reduce the computational complexity
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Figure 4: Collated histograms of K = 10000 vectors of unit
variance Gaussian input, quantized by uniform quantization
and entropy coding as well as the proposed dithered coder
(N = 32, γσ2 ), with 1 bit/sample.

without effect on the statistics of the output signal.

5. Experiments
To evaluate the performance the proposed hybrid codec, in com-
parison to uniform quantization, we performed three types of
experiments. Firstly, we study performance of dithering in iso-
lation with synthetic input. Secondly, we encode speech from
the TIMIT corpus and evaluate performance by objective cri-
teria. Finally, using samples from the TIMIT corpus, we per-
formed a MUSHRA subjective listening test to determine per-
ceptual preference among methods [19].

The output distribution of the proposed dithered quantiza-
tion (Eq. 1) in comparison to uniform quantization is illustrated
in Fig. 4. Here we encoded normally distributed K = 10000
vectors of length N = 32 with B = 32 bits and used the gain
factor γσ2 . We can readily observe that uniform quantization is
unable to retain the shape of the original distribution, whereas
the distribution of the output of the proposed dithered codec ex-
actly matches that of the input.

The performance of the proposed coder for a single frame
of speech is illustrated in Fig. 5; The spectral magnitude enve-
lope is estimated using linear predictive modelling in Fig. 5(a),
the expected bit-rate for each frequency is estimated from the
envelope using the method developed in [18] in Fig. 5(b) and a
threshold is applied to determine the choice of quantizer. Fi-
nally, in Fig. 5(c), the quantized output of the conventional
method is compared with the proposed method, where the gain
factor was γσ2 . We can clearly see that whereas for the con-
ventional approach, all frequencies above 2 kHz are quantized
to zero, the proposed method retains the spectral shape also at
the higher frequencies.

For objective evaluation of performance on real speech, we
encoded the entire TIMIT database (training and evaluation)
with different combinations of quantization and entropy cod-
ing [20]. Namely, we applied 1. uniform quantization with
arithmetic coding following [18] (Conventional), 2. a dither-
ing simulation by adding white noise to obtain same signal to
noise ratio as the conventional approach (Dithering), 3. the pro-
posed hybrid codec using γMMSE (1 bit MMSE) and 4. using
γσ2 (1 bit EM). The mean output energy across frequencies for
each method is illustrated in Fig. 1.

We can immediately see that all modifications of conven-
tional arithmetic coding bring the amount of energy closer to
the original energy envelope. The dithering simulation saturates
at the perceptual noise floor near −20 dB, which is higher than
the original energy envelope. Informal listening confirms that
such dithering has a noisy character, where the conventional is
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Figure 5: Illustration of performance for a typical speech spec-
trum at 13.2 kbits/s. (a) Input signal spectrum and its envelope,
(b) the bit-rate estimated from the envelope and the threshold
where quantizers are switched and (c) the quantized spectra
with conventional uniform quantization and entropy coding in
comparison to the proposed, dithered coder.

Table 1: Mean signal to noise ratio in the perceptually weighted
domain for the conventional and the two proposed methods.

1 bit MMSE 1 bit EM Conventional
SNR (dB) 10.75 10.46 8.93

muffled. The two proposed 1 bit dithering methods are closer
to the original energy envelope, such that the MMSE approach
γMMSE is clearly below the original while the energy matching
method γσ2 approximates nicely the desired energy envelope.

The average signal to noise ratios (SNR) in the perceptual
domain for the conventional and proposed methods are listed in
Table 1. Clearly the 1 bit MMSE approach reaches the highest
SNR, since it was designed to optimize SNR. However, as the
conventional method is also designed to optimize SNR, it is sur-
prising that we obtained such a large improvement of 1.81 dB.
The energy-matching approach γσ2 looses slightly in SNR to
the MMSE approach, but the difference of 0.29 dB is not large.
We need a subjective listening test to determine if it is more
important to preserve envelope shape or optimize SNR.

Finally, to determine subjective preference among methods,
we performed a MUSHRA listening test [19]. In the test, we
included 6 samples (3 male and 3 female) randomly chosen
from the TIMIT corpus [20]. In addition to the above meth-
ods, Conventional, Dithered, 1 bit MMSE and 1 bit EM, we in-
cluded here also a case where the conventional uniform coder
is enhanced by noise filling in post-processing. It was not in-
cluded in the previous tests because it is a blind post-processing
method in the sense that it adds noise without any transmitted
information from the input signal. It thus reduces SNR even
if it is designed to improve perceptual quality. In the listening
test, we had 14 normal hearing subjects in the age-range 26 to
43 years. Fig. 6 illustrates the results.

We observe for all items, that the proposed dithered 1 bit
quantizers have a higher mean than the other methods. More-
over, in the mean over all items (the “All” column), the pro-
posed dithered 1 bit quantizers have a statistically significant

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 All
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Figure 6: Results of a subjective MUSHRA listening test, com-
paring the proposed 1 bit dithered quantizers with conventional
arithmetic coding, as well as a synthetic dithering serving as an
anchor.
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Figure 7: Differential scores of a subjective MUSHRA listen-
ing test, comparing the proposed 1 bit dithered quantizers with
conventional arithmetic coding, as well as a synthetic dither-
ing serving as an anchor. Differences are calculated with the
noisefill as reference.

difference to the antecedent methods. Conventional arithmetic
coding without noisefill also shows a statistically significant re-
duction in quality in comparison to all other methods. To fur-
ther determine whether listeners have a preference among the
two proposed dithered quantizers, we calculated the differen-
tial MUSHRA scores with noisefill as a reference (see Fig. 7).
However, the differential scores revealed no additional details.

6. Discussion and Conclusions
Dithering is a classic method in signal processing and it is thus
useful to investigate whether is applicable also in speech and
audio coding. Our literature survey shows that conventional
methods in coding, such as noisefill and bandwidth-extension,
include features similar to dithering, but that they do not attempt
to optimize SNR. In contrast, in the current work, we propose to
use a recently developed method for dithering and coding which
is applicable to very low bitrates [15]. The approach is based on
a random rotation, sign-quantization in the randomized domain,
and an inverse transform. We propose to apply it in combina-
tion with conventional uniform quantization and entropy cod-
ing, such that only frequency components where we can afford
to use very little accuracy, are coded with the dithered quantizer.

By using dithering we can avoid the characteristic prob-
lem of conventional frequency-domain codecs, where higher
frequencies are often quantized to zero such the output sounds
muffled. In other words, the output is not unnaturally sparse.
Our objective and subjective experiments demonstrate that the
method gives a nice improvement in perceptual quality.
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