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Abstract 
Autocorrelation functions (ACF) have been used in various 
pitch detection algorithms (PDA) and voicing-feature based 
speech activity detection (SAD) techniques. Speech is 
assumed to be stationary over a short-term window, and a 
Hanning window is typically applied in the calculation of ACF. 
As a result of windowing, the ACF tapers as the 
autocorrelation lags increase. Boersma demonstrated that the 
tapering effect could be compensated for by dividing the ACF 
of the windowed signal by the autocorrelation of the 
windowing function itself, referred to as wACF hereafter. We 
recently found that wACF could cause overcompensation and 
therefore, result in errors in pitch detection. In this paper, a 
novel normalization method, eACF, is proposed that can both 
mitigate the tapering effect and minimize the 
overcompensation. The new method is evaluated on synthetic 
speech and on the TIMIT database with various types of 
additive noise at different signal-to-noise (SNR) ratios. The 
results show that the new method leads to better performance 
both in terms of pitch detection and speech activity detection. 
In this paper, we also investigate the scenarios where applying 
the wACF method is advantageous and where it is not. 
 
Index Terms: autocorrelation function, windowing effects, 
pitch detection algorithms, and speech activity detection 

1. Introduction 
Short-term autocorrelation functions (ACF) play an important 
role in speech processing, especially in pitch detection 
algorithms (PDA) and in voicing-feature based speech activity 
detection (SAD).  

Pitch detection, the problem of determining the 
fundamental frequency of acoustic signals, is a significant 
component in large speech processing. Similarly, speech 
activity detection, i.e. the discrimination of the speech or 
nonspeech segments in an audio input, is another important 
part of speech applications. Efficient PDA and SAD methods 
can considerably improve the performance of large speech 
processing systems, such as speech recognition, speaker 
identification and speech coding systems. For this reason, 
advanced algorithms have been proposed for robust PDA and 
SAD in adverse acoustic environments [1, 2, 3]. 

The autocorrelation function based algorithms are well 
known to be comparatively robust against noise [1, 4, 5]. 
Assume that x(j) is the speech signal, and w(j) is the Hanning 
window of 32-ms long.  The ACF of the windowed signal is 
then given by: 

 

        𝑟!! 𝑡, 𝑘 = [𝑥 𝑗 𝑤 𝑗 ][𝑥 𝑗 + 𝑘 𝑤 𝑗 + 𝑘 ]
!!!

!!!

,          1  

where N = 256 for a 32-ms window size and a sampling 
frequency of 8 kHz, j is the sample index, and t and k are the 
frame and autocorrelation lag indices, respectively. 

𝑟!! 𝑡, 𝑘   has several important features including, for 
example, 𝑟!! 𝑡, 0  ≥  𝑟!! 𝑡, 𝑘 , for all integers k and for 
any input signal. Consequently, eq. (1) is usually normalized 
by its value at k = 0: 

                             𝑟!!! 𝑡, 𝑘 =
 𝑟!! 𝑡, 𝑘
𝑟!! 𝑡, 0

.                                     2  

It is noted that, by definition, 𝑟!!,!! 𝑡, 𝑘   ≤  1. Another 
feature is that, for periodic signals, 𝑟!! 𝑡, 𝑘  has (local) 
maximal values at 𝑘 = 𝑛𝑇!, where n=1, 2, 3,… and 𝑇! denotes 
the period of the signal. The latter feature is utilized in speech 
and signal processing to determine if a signal is periodic, and 
if yes, what the corresponding period is [1, 4]. However, due 
to the windowing effect, 𝑟!! 𝑡, 𝑘  tapers as the lag k increases. 
As a result, eq. (1) becomes less effective for detecting larger 
periods (i.e., lower pitches). 

Boersma [6] demonstrated that the undesired tapering 
effect could be accounted for by dividing eq. (1) by the ACF 
of the window function itself, namely: 

 

                          𝑟!! 𝑡, 𝑘 = 𝑤 𝑗 𝑤 𝑗 + 𝑘
!!!

!!!

,                       3  

                            𝑟!!! 𝑡, 𝑘 =
 𝑟!! 𝑡, 𝑘
𝑟!! 𝑡, 0

,                                     4  

                           𝑟!!,!! 𝑡, 𝑘 =
 𝑟!!! 𝑡, 𝑘
𝑟!!! 𝑡, 𝑘

.                                     5  

Eq. (5) is referred to as the wACF method for simplicity. 
It is implemented in the popular open source Praat program 
for speech analysis [7], and is used in many recent studies of 
SAD [8, 9]. In addition, eq. (5) can mitigate strong oscillation 
of formants, which contributes to accurate pitch detection. 

We recently found that eq. (5) would overcompensate the 
tapering effect. This overcompensation was recognized in [6], 
and the following remedy was suggested: First, compute the 
value of  𝑟!!,!! 𝑡, 𝑘  in eq. (5). If the computed 𝑟!!,!! 𝑡, 𝑘  is 
greater than 1, it will be replaced by its reciprocal. Note that 
this overcompensation tends to yield pitch detection errors 
also for higher pitches (larger lags). 
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In this paper, we propose a novel normalization method 
for the ACF by modifying the algorithm in [6]. We will show 
that eqs. (1) and (5) are two special cases of the new method, 
and that  the new method, once optimized, has the combined 
advantages of combating the windowing effect without 
overcompensation. The new method is referred to as eACF. 

This paper is organized as follows. In section 2, the new 
normalization method is introduced, together with a brief 
description about the synthetic speech used for evaluation 
experiments. In section 3, the eACF method is first evaluated 
for the PDA task using synthetic speech dataset, and in section 
4, the eACF method is evaluated for the SAD task using the 
TIMIT dataset. Finally the paper is concluded with a summary 
in section 5. 

 

2. New normalization method  
In our recent study of using pitch continuity for robust SAD, 
we found that eq. (5) could cause overcompensation, and the 
overcompensation could not be completely undone by taking 
the reciprocal of eq. (5). Because the quantity 𝑟!!! 𝑡, 𝑘  is 
always in the interval of (0, 1], and we decide to introduce an 
exponent to Boersma’s algorithm [6] to effectively mitigate 
overcompensation (hence the name eACF). Mathematically, 
the eACF is given by: 

                           𝑟!!,!! 𝑡, 𝑘 =
 𝑟!!! 𝑡, 𝑘
𝑟!!! 𝑡, 𝑘 ! ,                                  (6) 

where 0 ≤ β ≤ 1. It can been that eq. (6) is a generalized form 
of eqs. (2) and (5); That is, eq. (6) degenerates to eq. (2) when 
β = 0, and it is equivalent to eq. (5) when β = 1. By tuning the 
value of β, it is hoped that one can achieve the optimal trade-
off between tapering and overcompensation so as to improve 
the performance of PDA and of SAD. 

Figure 1 illustrates several ACFs for the waveform 
shown on the top. The waveform is produced by the LF model 
[10] as the excitation source. The vocal tract load is 
approximated by one formant, F1. In b) the long term ACF 
(over 50 periods) is depicted. No tapering is observed because 
of no need of windowing for long-term inputs. It represents 
the ideal scenario, and it accurately detects the fundamental 
period at 6.6 ms (corresponding to the pitch of 150 Hz), as 
marked by the location of the square box in b). On the other 
hand, c), d), and e) are all for short-term ACFs, and they are 
obtained by eqs. (2), (5), and (6), respectively. Although 
visual inspection easily reveals the tapering effect in c), the 
overcompensation in d) is less obvious. However, both b) and 
c) give wrong period values. Curve e) of the eACF method is 
seen to give right estimate of the period. It can also seen that 
estimation errors often pertain to octave errors, that is, the 
estimated period is either !!

!
 or 𝑛𝑇! , where n is a positive 

integer (practically, n = 2 or 3.)  
Figure 2 gives another example of comparing different 

ACF curves for the same, short-term segment of speech input. 
It can clearly be seen that reciprocal-substitution occurs 
around the lag index of 120 for both β=1 and β=0.8. The 
superimposed curves in Figure 2 also facilitate to reveal the 
tapering impact (β=0 has the local maximum at lag of 17). 

2.1. Data of synthetic speech 

The β value used in Figure 1 is 0.9. In order to determine 
optimal value of β, a database of synthetic speech is prepared, 

where, again, the excitation source is based on the LF model, 
and one formant load is used to represent vocal tract response.  

 

 
Figure 1: Waveform and different autocorrelation 

functions of a synthetic speech (F0 = 150 Hz and F1 = 750 
Hz). a) waveform shown as a function of sample index; b) the 
long-term ACF (50 fundamental periods, to avoid windowing 
need; c) short-term ACF computed by eq. (2); d) short-term 
ACF computed by eq. (5), the wACF method; and e) short-
term ACF computed by eq. (6), eACF with β = 0.9. The red 
squares mark where the ACFs exhibit a peak in the plausible 
pitch range (from 62.5 Hz to 500 Hz). 

 

 
Figure 2: Superimposed ACF curves for the same speech 

segment, but for different β values, to illustrate tapering, 
overcompensation, and reciprocal-substitution. 

The LF model has several timing parameters, see Figure 
2. Without losing generality, 𝑇! is set to 0, and 𝑇! and 𝑇! are 
made to covary 𝑇!. 𝑇! is determined by the pitch values of 
interest: 65, 75, 100, 125, 150, 175, and 200 Hz. To examine 
the impact of formant oscillation, different frequencies and 
bandwidths of the first formant are considered: F1 varies from 
250 Hz to 850 Hz with the step size of 50 Hz, while two 
bandwidths alternate between 100 and 50 Hz. 

Finally, the clean, synthetic speech is added with different 
type of noise at various levels of SNR, with the help of the 
open-source software, FaNT [11].  The following noise types 
of noise are available: white, factory, volvo, babble (from the 
NOISEX-92 database [12]), subway noise (from the FaNT 
distribution), and finally an office background noise that we 
recorded [13]. The other details in the experiments are as 
follows: 
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• Sampling rate: 8000 Hz; 
• Window size: 32 ms; 
• Shift size: 10 ms; and 
• SNR levels: 0, 5, 10, and 20 (dB). 

 
 

 
Figure 3: The LF glottal source model with its timing 

parameters 𝑇! , 𝑇! , 𝑇! , and 𝑇! , and the relative excitation 
strength parameter EE at the instant of 𝑇!. See [10] for more 
details. 
 
 

3. Performance evaluation of PDA 
The synthetic speech is used to tune the parameter β. One of 
the advantages of using synthetic speech is of course the fact 
that the true period is known. As a result, we are able to be 
more accurate in evaluating the results than the gross error of 
20% commonly used in the discussion of PDAs. If the 
estimated period is 3 lags or more away from the truth, it is 
regarded as an error. 

We vary β from 0 (equivalent to eq. (2)) to 1 (equivalent to 
eq. (5) with a delta of 0.05. The experimental results are 
presented in Table 1 and Figure 4 below.  

Table 1: PDA error rate as function of pitch, F0. For 
each F0, error rates for 3 values of β are presented: β = 

0, β =1, and the optimal β with the lowest error rate.  

F0  
(Hz) 

β=0 
(％) 

β=1 
(％) 

eACF 
(％) 

Optimal 
β 

65 79.79  30.45  26.07  0.8 
75 56.78  20.91  17.40  0.85 

100 33.37  17.31  17.31  1 
125 23.73  50.00  18.72  0.55 
150 15.58  51.23  15.42  0.15 
175 15.46  51.92  15.13  0.25 
200 14.42  59.13  14.42  0 

Aggregate 34.15 40.13  19.9 0.7 
 
 

 
In Figure 4, Curve a) is the overall error rate distribution. 

It is the sum of Curves b) and c), which, respectively, denote   
the errors with underestimated periods and with overestimated 
periods. It is seen that with β = 1, the PDA errors are 
dominated by overestimates: the detected periods are longer 

than the input period. This is expected since overcompensation 
gets more and more serious as the autocorrelation lags 
increase, It is noted that we have not considered pitch 
continuity in the above result analysis. This continuity feature 
can of course easily be incorporated to enhance the accuracy 
of pitch detection.  

 

 
 

Figure 4: pitch detection error rates in % by varying β. a: 
sum of curves b and c; b: error rates of underestimated pitch; 
and c: error rates of overestimated pitch. The red square 
indicates the minimum error rate, with β = 0.7. 

4. Performance evaluation of SAD 

4.1. Testing data based on TIMIT 

The New England subset of the TIMIT database [14] is used 
as clean data for experiments on SAD. It has a total of 38 
speakers, with 10 utterances per speaker. The data is first 
down-sampled to 8 kHz, and then added with 3 noise types 
(volvo, factory and office) at 4 different SNR levels (0, 5, 10, 
and 20 dB).  

4.2. Voicing features for SAD  

Voicing features, those related to pitch and harmonics, 
have been utilized successfully for SAD, especially under the 
interference of ambient additive noise [8, 9].  

Two popular voicing features are (i) harmonicity and (ii) 
clarity [8], with both being dependent on ACFs: 

• Harmonicity (or harmonics-to-noise ratio): the relative 
height of the maximum autocorrelation peak in the 
plausible pitch range: 

 

                  𝐻 𝑡 =
𝑟!!,!! (𝑡, 𝑘!"#)

𝑟!!,!! (𝑡, 0) − 𝑟!!,!! (𝑡, 𝑘!"#)
 .                (7) 

 
• Clarity: the relative depth of the minimum average 

magnitude difference function (AMDF) valley in the 
plausible pitch range, where AMDF is approximated by 
[15]: 

𝐴𝑀𝐷𝐹 𝑡, 𝑘 ≈ 0.8× 2𝑟!!,! 𝑡, 0 − 𝑟!!,! 𝑡, 𝑘 ,      (8𝑎) 

𝐶 𝑡 = 1 −
𝐴𝑀𝐷𝐹 𝑡, 𝑘!"#
𝐴𝑀𝐷𝐹 𝑡, 𝑘!"#

.                                        (8𝑏) 
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The two features are used to study how SAD performance 

varies as β of eq. (6) changes. We follow the approach in [8] 
for feature fusion based on principal component analysis, and 
for setting the threshold for decision-making. The resultant 
one-dimension feature is the final feature for SAD.  

Error rates are estimated from the amount of time that is 
misclassified by the system, in the way as specified in the 
official NIST OpenSAD [16]. The Detection Cost Function 
(DCF) in [16] is used as the criterion for performance 
evaluation, which is given by: 
                        DCF = 𝑃!"##×0.75 + 𝑃!"×0.25,                       (9) 
where 𝑃!"## is the missing rate, and 𝑃!" is the false alarm rate. 
The results are presented in Table 2 and Figure 5. 
 

 
Figure 5: Minimal DCF in % with varying β. The red 

square marks the minimum in the plot, at β = 0.8.  
 

Table 2: Minimal DCF in % of different β. 

             β MinDCF (%) 
 0 5.66 
 1 5.19 
 0.8 (eACF) 5.08 

 
 

As shown in Table 2 and Figure 5, the new method achieves 
the best performance at the vicinity of β = 0.8. But this time 
the difference between β = 0.8 and β = 1.0 (wACF) is 
marginal. Recall from Figure 4 that for pitch detection the 
wACF is notably inferior to the eACF (with β = 0.7). In other 
words, β=1.0 for SAD is more effective than for PDA. One 
explanation for such contrast is as follows. For PDA, it is the 
location of ACF’s peaks that matters; while for SAD using 
harmonicity and clarity, both the location and its absolute 
amplitude value of ACF that matter jointly, especially the 
latter. An error in the location can mean an error in PDA. 
However, the location error may probably be offset by the 
minor difference between the amplitude of ACF at the true 
location and detected one. In such cases, comparatively good 
SAD performance is obtained even if the detected location is 
off when β = 1 [17]. On the other hand, the DCF at β = 0 is, 
however, significantly worse, explaining the popularity of 
using wACF for SAD. 
 

5. Conclusion 
A novel normalization method for the autocorrelation function 
is proposed in this paper, based on the algorithm outlined in 
[6]. In [6], the ACF of windowed signal is normalized by the 
ACF of the window function, to compensate for tapering 
effect resulting from windowing. But it is found that 
overcompensation may take place. In the new method, an 
exponent is introduced to minimize overcompensation, and 
hence the name of eACF.  

Using a synthetic speech input, it is illustrated how short-
term ACF differs from its long-term counterpart. (We are not 
aware of any attempt where humans can sustain identical 
phonation and articulation for relatively a long time.) In 
Figure 1, tapering effect, overcompensation, and effectiveness 
of eACF are all shown.   

 Using the LF source model we prepare a set of speech 
data where controlled changes to 𝑇!, and the frequency and 
bandwidth of the first formant. The clean set of the data is next 
augmented by the noisy version by adding noise of different 
types and at different SNR levels. This set of data is used to 
determine the optimal value of β for PDA. The result shows 
that a minimum PDA error rate of 19.9% is achieved at β = 
0.7. This error rate represents a 50% reduction of the error rate 
comparing to that of β = 1 or 0.  

The eACF is then evaluated in term of robust SAD. The 
New England subset of the TIMIT corpus is used for this 
purpose. Again, the clean version is augmented with the noisy 
versions by adding noise. The voicing features, harmonicity 
and clarity [8], are used in the experiment. The result shows 
that the eACF is able to produce a lowered minimal DCF, see 
Figure 5. 

The optimal value for β differs depending the task: PDA 
versus SAD. But the difference is reasonably small. We would 
suggest that a range of β from 0.7 to 0.8 be used. 

In addition, it can be seen from Table 1 that different 
ranges of pitch are favored by different values of β. For 
instance, β =1 works better for low pitches, while β = 0 better 
for high pitches. It is therefore possible to dynamically adjust 
the value of β once we know the range of pitches of the 
incoming speech. 

In the near future, we plan to evaluate our new method 
using real speech data (preferably with pitch information 
already manually marked.)  
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