
Attentive Sequence-to-Sequence Learning for
Diacritic Restoration of Yorùbá Language Text

Iroro Fred Ò. nò. mè. Orife

Niger-Volta Language Technologies Institute
iroro@alumni.cmu.edu

Abstract

Yorùbá is a widely spoken West African language with a writ-
ing system rich in tonal and orthographic diacritics. With very
few exceptions, diacritics are omitted from electronic texts, due
to limited device and application support. Diacritics provide
morphological information, are crucial for lexical disambigua-
tion, pronunciation and are vital for any Yorùbá text-to-speech
(TTS), automatic speech recognition (ASR) and natural lan-
guage processing (NLP) tasks. Reframing Automatic Diacritic
Restoration (ADR) as a machine translation task, we experi-
ment with two different attentive Sequence-to-Sequence neural
models to process undiacritized text. On our evaluation dataset,
this approach produces diacritization error rates of less than 5%.
We have released pre-trained models, datasets and source-code
as an open-source project to advance efforts on Yorùbá language
technology.
Index Terms: automatic diacritization, Yorùbá language, neu-
ral machine translation, sequence-to-sequence models

1. Introduction
Yorùbá is a tonal language spoken by more than 40 Million peo-
ple in the countries of Nigeria, Benin and Togo in West Africa.
There are an additional million speakers in the African diaspora,
making it the most broadly spoken African language outside
Africa [1]. The phonology is comprised of eighteen consonants
(b, d, f, g, gb, h, j, k, l, m, n, p, r, s, s. , t, w, y), seven oral vowel
(a, e, e. , i., o, o. , u) and five nasal vowel phonemes (an, e. n, in, o. n,
un) with three kinds of tones realized on all vowels and syllabic
nasal consonants (ḿ, ń) [2]. Accordingly, Yorùbá orthography
makes significant use of tonal diacritics to signify tonal patterns,
and orthographic diacritics like underdots for various language
sounds [3]. For example, e. signifies a half-open vowel, while s.
represents a palatoalveolar fricative [4].

On modern computing platforms, the vast majority of
Yorùbá text is written in plain ASCII, without diacritics. This
presents grave problems for usage of the standard orthography
via electronic media, which has implications for the unambigu-
ous pronunciation of Yorùbá’s lexical and grammatical tones by
both human speakers and TTS systems. Improper handling of
diacritics also degrades the performance of document retrieval
via search engines and frustrates every kind of Natural Lan-
guage Processing (NLP) task, notably machine translation to
and from Yorùbá [5]. Finally, correct diacritics are mandatory
in reference transcripts for any Automatic Speech Recognition
(ASR) task.

Automatic Diacritic Restoration (ADR), which goes by
other names such as Unicodification [6] or deASCIIfication [7]
is a process which attempts to resolve the ambiguity present
in undiacritized text. Table 1 shows diacritized forms for each
non-diacritic character.

Undiacritized Yorùbá text has a high degree of ambiguity
[3, 8, 9]. Adegbola et al. state that for ADR the “prevailing
error factor is the number of valid alternative arrangements of
the diacritical marks that can be applied to the vowels and syl-
labic nasals within the words” [3]. For our training corpus of
1M words, we quantify the ambiguity by the percentage of all
words that have diacritics, 85%; the percentage of unique non-
diacritized word types that have two or more diacritized forms,
32%, and the lexical diffusion or LexDif metric, which con-
veys the average number of alternatives for each non-diacritized
word, 1.47. Further, 64% of all unique, non-diacritized mono-

Table 1: Characters with their non-diacritic forms

Characters Examples

à á ǎ a gbà (spread), gba (accept), gbá (hit)
è é e. è. é. e esé (cat), èsè (dye), e.sè. (foot)
ı̀ ı́ i ı̀lú (town), ilu (opener), ı̀lù (drum)
ò ó o. ò. ó. ǒ o o.kó. (hoe), ò. kò. (spear), o. kò. (vehicle)
ù ú ǔ u mu (drink), mù (sink), mú (sharp)

ǹ ń n̄ n n (I), ń (continuous aspect marker)
s. s sá (run), s.á (fade), s.à (choose)

syllabic words possess multiple diacritized forms [10, 11].
When we consider the distribution of ambiguity over grammat-
ical function, we recognize the added difficulty of tasks like the
lexical disambiguation of non-diacritized Yorùbá verbs, which
are predominantly monosyllabic.

To date, methods to solving Yorùbá ADR have used
memory-based or Naı̈ve Bayes classifers on n-gram features.
Efforts have focused on the word-level or mixed-models, rather
than purely character-level models based on results that indi-
cate “tonal diacritics can simply not be solved on the level of
the grapheme” [9]. With some studies using corpora as small
as 5k words from a 3.5k lexicon [6], the dearth of accurate dia-
critized electronic text has been the object of study as well as a
limiting factor on progress [3].

Recently, neural machine translation (NMT) has emerged
as the state-of-the-art approach to solving automatic inter-
language machine translation. Expressing ADR as a machine
translation problem, we treat undiacritized text and diacritized
text as source and target languages respectively in a NMT for-
mulation. Our contributions are as follows:

• We propose two different NMT approaches, using
soft-attention and self-attention sequence-to-sequence
(seq2seq) models [12, 13], to rectify undiacritized
Yorùbá text.

• We release the training datasets, pre-trained models,
source code and reproducible results into the public do-
main as an open-source project.

Interspeech 2018
2-6 September 2018, Hyderabad

2848 10.21437/Interspeech.2018-42

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/0042.html

This paper is organized as follows. Section 2 reviews previous
work in Yorùbá ADR. In section 3, we review algorithms for
seq2seq learning. In section 4 and 5, we present our experimen-
tal setup and results. In section 6, we conclude with a review of
applications and future directions.

2. Related work
ADR is an active field of study with on-going efforts in a wide
variety of languages, including Czech, Polish, Romanian and
Hungarian [14, 15, 16], Turkish [7], Arabic [17, 18, 19, 20],
Māori [21], Uyghur [22], Urdu [23], Vietnamese [24, 25, 26],
as well as West African languages like Igbo [27] and Yorùbá
[3, 6, 8, 9].

ADR investigations have relied on ruled-based morpholog-
ical analyzers [14, 23], or used a variety of statistical learn-
ing techniques including conditional random fields (CRFs) [20],
support vector machines (SVMs) [25], Hidden Markov Models
(HMMs) [17], finite state transducers [19], n-gram models [23]
and recurrent neural networks [18]. Parallel corpora, statisti-
cal machine translation (SMT) techniques have also been used
[14, 20]. We will focus our review specifically on Yorùbá and
ADR techniques using NMT sequence-to-sequence models.

2.1. Yorùbá ADR

The complexity of the Yorùbá ADR task is comparable to lan-
guages like Vietnamese where over 90% of words contain di-
acritics, of which some 80% are ambiguous without diacritics
[24, 26]. In a contrastive study of seven resource-scarce African
languages and better resourced European and Asian languages,
DePauw et al. [9] report LexDif scores of 1.26 and 1.21 re-
spectively for Yorùbá and Vietnamese, citing the similar disam-
biguation tasks due to the marking of phonemic variants and
tonal characteristics. In contrast, French and Romanian cor-
pora, where approximately a fifth and two-fifths of words con-
tain diacritics, received LexDif scores of 1.04 and 1.05 respec-
tively [28].

For Yorùbá, DePauw et al. trained a Tilburg Memory-Based
Learner (TiMBL) classifier that predicted the correct diacritic
based on the local graphemic context. Memory-based learn-
ing is a variant of the classical k-Nearest Neighbors (k-NN) ap-
proach to classification, common for NLP tasks. Trained on
a corpus of 65.6k words, their best word-level accuracy was
76.8%.

Scannell [6] implemented a Naı̈ve Bayes classifier using
word and character-level models. For character-level predic-
tion, each ambiguous character was treated as a separate classi-
fication problem, disregarding any previous diacritization. For
word-level, two lexicon lookup methods were used: The first
replaces ambiguous words with the most frequent candidate,
while the second uses a bigram model to determine the out-
put. The corpus was a meager 5k words from a 3.5k word lex-
icon. Word-level models significantly outperformed character-
level models with a top word-level accuracy of 75.2%.

Investigating the effect of corpus size on ADR accuracy,
Adegbola et al. [3] used a Naı̈ve Bayes classifier based on
word trigram probabilities and linear interpolation for smooth-
ing. Trained on 100K words with a 7.5k lexicon, the best word-
level ADR result was 70.5%.

Asahiah et al. [8] tackle a subset of the full ADR task,
uniquely focusing on tone mark restoration, not orthographic
diacritics. On a corpus of 250k words, using a TiMBL classifier
and syllables as the unit of restoration, they report mean accura-

cies at the syllable and word-level of 98% and 93% respectively.

Note that in each of the four studies, the evaluation cor-
pora are private and the results from each are not directly
comparable to the others.

2.2. Sequence-to-sequence learning for ADR

There have been only two investigations, to our knowledge,
that use sequence-to-sequence learning for ADR tasks. Pham
et al. [24] compared the performance of a standard RNN
Encoder-Decoder pair on a Vietnamese ADR task. The results
on a dataset of 180k sentence pairs yielded accuracy scores
of 96.15%, in comparison to 97.32% for the state-of-the-art
phrase-based approach for Vietnamese.

For Uyghur language text normalization, Tursun et al. [22]
use a non-attentive sequence-to-sequence model for character-
level restoration. On a small corpus of 1372 words (226 sen-
tences), they report accuracy of 65.7% for the sequence-to-
sequence model and in comparison, 64.9%, for a noisy channel
model.

3. Sequence-to-sequence learning
Neural machine translation (NMT) is a recent approach to ma-
chine translation that uses models belonging to a family of
encoder-decoders neural networks, trained to maximize the
probability of a correct translation given a source sentence
[29, 30]. Recurrent neural networks (RNNs) are a common
choice for encoders and decoders because they can learn a prob-
ability distribution over a sequence of symbols by being trained
to predict the next symbol in the sequence [30].

In the basic RNN Encoder-Decoder architecture, an RNN-
Encoder operates on a variable-length source sequence x =
(x1, ..., xTx) to generate a fixed-length summary context vec-
tor c from its sequence of hidden states. At time step t, the
encoder’s hidden state he

t ∈ Rn is updated by

he
t = fenc (xt,h

e
t−1) (1)

and
c = genc ({he

1, ...,h
e
Tx
}) (2)

fenc and genc are recurrent non-linear activation functions, as
simple as a logistic sigmoid or as complex as a gated recurrent
unit (GRU) or long short-term memory (LSTM) unit [12]. The
RNN-Decoder is another RNN trained to generate an output se-
quence y = (y1, ..., yTy), by predicting the next word yt from
previously predicted words, its hidden state hd and the context
vector c. At time step t, the decoder’s hidden state hd

t is updated
by

hd
t = fdec (yt−1,h

d
t , c) (3)

and the conditional distribution of the next symbol is

p(yt|{y1, ..., yt−1},x) = softmax(gdec(h
d
t)) (4)

where fdec is another recurrent non-linear activation function
like an LSTM. gdec is a transformation function that returns a
vocabulary-sized vector, from which the softmax function out-
puts the probability of yt [31]. The joint training objective is to
minimize the conditional negative log-likelihood

J = − 1

N

N∑

n=1

T
(n)
y∑

t=1

log p(yt = y
(n)
t |y(n)

<t ,x
(n)) (5)

2849

where N is the number of parallel training sentence pairs, and
x(n) and y(n)

t are the source sentence and tth target symbol in
the nth pair respectively [31]. Though initial RNN-Decoders
only observed the last encoder hidden state, with context vector
c = he

Tx
, variants of this architecture differ in the type of RNN

and how the context vector c is derived [12, 30].

3.1. Soft-attention

The first architecture used in this study is based on the work of
Bahdanau et al. [12], which extends the RNN-Encoder-Decoder
design with an attention mechanism that allows the decoder
to observe different source words for each target word. A bi-
directional RNN is used for the encoder network to create rep-
resentations that consider both past and future inputs. The state
he
j corresponds to the concatenation of states produced by the

forward and backward RNNs: he
j = [

−→
he
j ;
←−
he
j]. At each decoding

time step, the context vector ci is now computed as a weighted
sum of the encoder hidden states

ci =

Ty∑

j=1

αijh
e
j (6)

where αij = softmax(eij) and eij = att(hd
i−1,h

e
j). The

magnitude of the attentional weight αij represents how impor-
tant the jth source token xj is to the ith target token yi. eij is an
unnormalized compatability score between the encoder state he

j

(inputs around position j) and the decoder state hd
i−1 (outputs

around position i) [12, 32]. This score can be computed most
simply as the dot-product between the vectors, where the ma-
trices W transform the encoder and decoder states into a same-
sized representation. Bahdanau et al. define att as a small feed-
forward neural network with a single hidden layer with va as an
additional weight matrix [12].

att(hd
i−1,h

e
j) =

{
〈Wdh

d
i−1,Weh

e
j〉 dot

v>a tanh(Wdh
d
i−1 +Weh

e
j) add

(7)

The att network is jointly trained end-to-end with the other
components of the system by minimizing the conditional neg-
ative log-likelihood of the target words. The conditional dis-
tribution of the next decoded symbol, as expressed in Equation
4, remains the same. The attention mechanism only affects the
computation of the context vector ci, effectively relieving the
encoder from the trouble of encoding all source information into
a fixed-length vector. Rather, distributed information through-
out the encoder hidden states can be selectively retrieved by the
decoder, yielding both performance and scalability benefits.

3.2. Self-attention

The second attentive seq2seq architecture employed in this
study aims to improve on limitations of RNNs, i.e. high com-
putational complexity and non-parallelizeable computation. For
both the encoder and decoder, the Transformer model, proposed
by Vaswani et al. [13], employs stacks of self-attention layers
in lieu of RNNs. Intuitively, self-attention, or intra-attention,
computes a representation of a single sequence, modeling de-
pendencies between words from the same sequence. It serves
the same purpose as the bi-directional RNN, capturing more di-
rectly and efficiently, the relevant context for each word in a
sequence.

Self-attention layers use multiple attention heads, with each
head mapping a source sequence x = (x1, ..., xTx) into a new

sequence of the same length z = (z1, ..., zTx). The source x
is linearly transformed into queries, keys and values matrices
using parameter matrices WQ, WK , WV for each layer and
each attention head. An output element zi is computed as

zi =

Tx∑

j=1

αij(xjW
V) (8)

where as with soft-attention above, αij = softmax(eij) and

eij =
1√
dz

(xiW
Q)(xjW

K)> (9)

The scaled-dot product function in Equation 9 computes a com-
patibility score eij , between queries and keys. h parallel heads
are used to attend to different parts of the value vectors, con-
catenating the output of each head to form a single output vec-
tor. Because self-attention layers are inherently invariant to se-
quence ordering, explicit positional encodings are concatenated
along with the input. Residual connections also help distribute
position information to higher layers.

Overall, the Transformer encoder is composed of 6 iden-
tical layers, each combining a self-attention sub-layer with a
fully-connected feed-forward network. The decoder has a sim-
ilar construction, adding a third sub-layer, which does multi-
head attention over the output of the encoder stack, i.e. encoder-
decoder attention. The joint training objective remains the same
as in the previous sequence-to-sequence architectures.

4. Experimental setup
We review our dataset collection and preprocessing methods
then discuss tools and techniques for ADR model training.

4.1. Text preparation

To prepare source and target texts for parallel training, we ob-
tained a very small but fully diacritized text from the Lagos-
NWU conversational speech corpus by Niekerk, et. al [33].
We also created our own medium-sized corpus by web-crawling
the two Yorùbá-language websites with full diacritics, a current
events blog and an online Bible.

Collecting data from varied sources this way is resource-
ful but also introduces covariate shift between the data subsets.
This necessitated text preprocessing of all web-crawled text to
ensure common character sets with minimal punctuation. We
also cleaned up texts to ensure consistent, error-free diacritiza-
tion, splitting lines on full-stops to give one sentence per line.
To ensure our splits are drawn from similar distributions, we
combined all text, shuffled and split utterances into a ratio of
80%, 10%, 10%, for training, test and dev sets respectively.

Table 2: Training data subsets

words Source URL Description

24,868 rma.nwu.ac.za Lagos-NWU corpus
50,202 theyorubablog.com language blog
910,401 bible.com online bible webite

Next, all characters in the texts were dispossessed of their
diacritics. This entailed converting diacritized text to Unicode
Normalization Form Canonical Decomposition (NFD) which
separates a base character from its diacritics. We then fil-
tered out all the UnicodeCategory.NonSpacingMark characters,

2850

which house the diacritic modifications to a character. This
yielded two sets of text, one stripped of diacritics (the source)
and the other with full diacritics (the training target). To better
understand the dataset split, we computed a perplexity of 575.6
for the test targets with a language model trained over the train-
ing targets [34]. The {source, target} vocabularies for training
and test sets have {11857, 18979} and {4042, 5641}word types
respectively.

4.2. Training

We built the soft-attention and self-attention models with the
Python 3 implementation of OpenNMT, an open-source toolkit
created by the Klein et al. [35]. Our choice of programming
language included practical engineering considerations, includ-
ing Unicode support and modern asynchronous execution. In a
training framework, we needed an expressive, extensible inter-
face, documentation and Tensorboard integration. Our training
hardware configuration was a standard AWS EC2 p2.xlarge in-
stance with a NVIDIA K80 GPU, 4 vCPUs and 61GB RAM.
Training the various models took place over the course of a few
days.

Experiments varied over the dimensionality of the word em-
bedding layers, the number and size of the RNN layers, the at-
tention type (tanh, dot) and optimizer’s hyperparameters. Soft-
attention training usually converged within 50 epochs, using
the Adam optimizer with learning rate decay. The Transformer
model however needed only 25 epochs. We selected the top 5
models with the best results on the held-out test set in Table 3.

5. Results
To evaluate the performance of our ADR models, we computed
the accuracy score as the ratio of correct words restored to all
words. We calculate the perplexity of each model’s predictions
based on the test set targets. The type of RNN or attention did

Table 3: Training & Test Accuracy and Perplexity

Attention Size RNN Train% Test% PPL

soft + dot 2L 512 LSTM 96.2 90.1 1.68
soft + add 2L 512 LSTM 95.9 90.1 1.85
soft + tanh 2L 512 GRU 96.2 89.7 1.83
soft + tanh 1L 512 GRU 97.8 89.7 1.86

self 6L 512 - 98.5 95.4 1.32

not make much difference in accuracy, with GRUs and tanh at-
tention being as accurate as dot-product attention with LSTMs.
We suspect that attention type will have a significant influence
on accuracy when training on a much larger corpus.

Early in the training process, models exhibited word order
errors in addition to partial and incorrect diacritizations. As
learning slowed, models from both attention architectures were
able to satisfactorily learn long-range dependencies and the cor-
rect context for most tonal and orthographic diacritics, with the
Transformer model being slightly more accurate.

For example, the verbs bàjé. (to spoil), or jùlo. (to be more
than) are discontinuous morphemes, or splitting verbs. In Table
4, the first example shows the model has learnt the diacritics
necessary for lo. following a previously predicted jù. In the sec-
ond example, we note the ambiguity of the three occurences of
the undiacritized si, with two diacritized forms, sı̀, sı́. An exam-
ination of the attention weight matrix for this example revealed

that the third instance sı́ attends to the previous sı́ and that the
first two attend to each other.

Table 4: A sample diacritization from the test set

src emi ni oye ju awon agba lo nitori mo gba eko re
tgt èmi ni òye jù àwo. n àgbà lo. nı́torı́ mo gba è.kó. re.

pred èmi ni òye jù àwo. n àgbà lo. nı́torı́ mo gba è.kó. re.

src emi yoo si si oju mi si juda
tgt èmi yóò sı̀ sı́ ojú mi sı́ ilé júdà

pred èmi yóò sı̀ sı́ ojú mi sı́ ilé júdà

While performing error analyses on the model predictions,
we observed inconsistent diacritizations in the training set. This
was especially apparent for words with multiple diacritcized
characters but a unique diacritized form, for example nı́nú (in-
side) or orı́s. ı̀ı́rı́s. ı̀ı́ (all kinds of). Errors in the training set lead
to incomplete and erratic diacritizations during inference and
while a partial restoration may reduce the ambiguity of text for
a human reader, it still presents problems for automatic text pro-
cessing and search applications. Across the full corpus, to de-
tect incorrect variants of both single and multiple diacritized
forms, we can first train a word vector model using fastText
[36]. Then given a word that was incorrectly predicted in the
test set, we can look at it’s nearest neighbours and amend the
word forms in the training set that are not valid diacritizations.

Lastly, regarding the composition of the dataset (Table
2), numerous sections contained lengthy passages with a liter-
ary style or referenced foreign locations and names that were
adapted to a characteristic Yorùbá form. To make ADR more
suitable as a preprocessing step for end-user TTS, ASR appli-
cations or any business usage, it’ll be necessary to augment the
corpus with more general purpose text.

6. Conclusions
We have presented a practical study of attention-based
sequence-to-sequence learning approaches for diacritic restora-
tion. Avenues for future work include evaluating previous ap-
proaches to Yorùbá ADR on this new dataset, growing the train-
ing corpus and training superior word embeddings.

We foresee many applications for our work. Firstly, it
minimizes the amount of manual correction needed to create
a high quality text corpus. Secondly, it is important that the
largest repositories of Yorùbá language material on the web
are not invisible to the standard search engines. Finally, the
integration of automatic diacritizers into text editors, web
browser extensions and mobile phone keyboards will greatly
simplify input tasks, allowing users to enter text in plain ASCII
and have the correct orthography appear on the screen.

The source code and dataset will be available at https:
//github.com/Niger-Volta-LTI/yoruba-adr

7. Acknowledgements
We thank lexicographer and linguist, Kó. lá Túbò. sún for kindly
reviewing the training corpora and providing feedback.

8. References
[1] Wikipedia. (2004) Yoruba language, wikipedia. [Online]. Avail-

able: https://en.wikipedia.org/wiki/Yoruba language

2851

[2] A. Akinlabi, “The sound system of Yorùbá,” Lawal, N. Sadisu,
MNO & Dopamu, A (Eds.) Understanding Yoruba life and culture.
Trento: Africa World Press Inc, pp. 453–468, 2004.

[3] T. Adegbola and L. U. Odilinye, “Quantifying the effect of corpus
size on the quality of automatic diacritization of Yorùbá texts,” in
Spoken Language Technologies for Under-Resourced Languages,
2012, pp. 48–53.

[4] J. Wells, “Orthographic diacritics and multilingual computing,”
Language problems and language planning, vol. 24, no. 3, pp.
249–272, 2000.

[5] T. V. Asubiaro, “Effects of diacritics on web search engines,”
Journal of Library and Information Sciences, vol. 12, no. 1, pp.
1–19, 2014.

[6] K. P. Scannell, “Statistical unicodification of African languages,”
Language resources and evaluation, vol. 45, no. 3, p. 375, 2011.

[7] A. Arslan, “Deasciification approach to handle diacritics in Turk-
ish information retrieval,” Information Processing & Manage-
ment, vol. 52, no. 2, pp. 326–339, 2016.

[8] F. O. Asahiah, O. A. Odejobi, and E. R. Adagunodo, “Restoring
tone-marks in standard Yorùbá electronic text: improved model,”
Computer Science, vol. 18, no. 3, pp. 301–315, 2017. [Online].
Available: https://journals.agh.edu.pl/csci/article/view/2128

[9] G. De Pauw, P. W. Wagacha, and G.-M. De Schryver, “Automatic
diacritic restoration for resource-scarce languages,” in Interna-
tional Conference on Text, Speech and Dialogue. Springer, 2007,
pp. 170–179.

[10] A. Oluseye. (2003) Yorùbá: A grammar sketch: Version
1.0. [Online]. Available: https://www.bible.com/bible/911/GEN.
1.BMY

[11] I. O. Delano, A dictionary of Yorùbá monosyllabic verbs. Insti-
tute of African Studies, University of Ife, 1969, vol. 1.

[12] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine trans-
lation by jointly learning to align and translate,” arXiv preprint
arXiv:1409.0473, 2014.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
arXiv preprint arXiv:1706.03762, 2017.

[14] A. Novák and B. Siklósi, “Automatic diacritics restoration for
Hungarian,” in Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, 2015, pp. 2286–2291.

[15] D. Tufiş and A. Ceauşu, “Diac+: A professional diacritics recov-
ering system,” Proceedings of LREC 2008, pp. 167–174, 2008.

[16] R. Mihalcea and V. Nastase, “Letter level learning for language
independent diacritics restoration,” in Proceedings of the 6th con-
ference on Natural language learning-Volume 20. Association
for Computational Linguistics, 2002, pp. 1–7.

[17] M. Khorsheed, “A hmm-based system to diacritize Arabic text,”
Journal of Software Engineering and Applications, vol. 5, p. 124,
2012.

[18] Y. Belinkov and J. R. Glass, “Arabic diacritization with recurrent
neural networks.” in EMNLP, 2015, pp. 2281–2285.

[19] R. Nelken and S. M. Shieber, “Arabic diacritization using
weighted finite-state transducers,” in Proceedings of the ACL
Workshop on Computational Approaches to Semitic Languages.
Association for Computational Linguistics, 2005, pp. 79–86.

[20] T. Schlippe, T. Nguyen, and S. Vogel, “Diacritization as a ma-
chine translation problem and as a sequence labeling problem,” in
AMTA-2008. MT at work: In Proceedings of the Eighth Confer-
ence of the Association for Machine Translation in the Americas,
2008, pp. 270–278.

[21] J. Cocks and T. T. Keegan, “A word-based approach for diacritic
restoration in Māori,” in Proceedings of the Australasian Lan-
guage Technology Association Workshop 2011, 2011, pp. 126–
130.

[22] O. Tursun and R. Cakici, “Noisy Uyghur text normalization,” in
Proceedings of the 3rd Workshop on Noisy User-generated Text,
2017, pp. 85–93.

[23] A. Raza and S. Hussain, “Automatic diacritization for Urdu,”
in Proceedings of the Conference on Language and Technology,
2010, pp. 105–111.

[24] T.-H. Pham, X.-K. Pham, and P. Le-Hong, “On the use of machine
translation-based approaches for Vietnamese diacritic restora-
tion,” arXiv preprint arXiv:1709.07104, 2017.

[25] T. A. Luu and K. Yamamoto, “A pointwise approach for Viet-
namese diacritics restoration,” in Asian Language Processing
(IALP), 2012 International Conference on. IEEE, 2012, pp. 189–
192.

[26] T. N. D. Do, D. B. Nguyen, D. K. Mac, and D. D. Tran, “Ma-
chine translation approach for Vietnamese diacritic restoration,”
in Asian Language Processing (IALP), 2013 International Con-
ference on. IEEE, 2013, pp. 103–106.

[27] I. Ezeani, M. Hepple, and I. Onyenwe, “Automatic restoration of
diacritics for Igbo language,” in International Conference on Text,
Speech, and Dialogue. Springer, 2016, pp. 198–205.

[28] M. Simard, “Automatic insertion of accents in French text,” in
Proceedings of the Third Conference on Empirical Methods for
Natural Language Processing, 1998, pp. 27–35.

[29] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Advances in neural information
processing systems, 2014, pp. 3104–3112.

[30] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase repre-
sentations using rnn encoder-decoder for statistical machine trans-
lation,” arXiv preprint arXiv:1406.1078, 2014.

[31] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches
to attention-based neural machine translation,” arXiv preprint
arXiv:1508.04025, 2015.

[32] D. Britz, A. Goldie, T. Luong, and Q. Le, “Massive explo-
ration of neural machine translation architectures,” arXiv preprint
arXiv:1703.03906, 2017.

[33] D. R. v. Niekerk and E. Barnard, “Tone realisation in a Yorùbá
speech recognition corpus,” in Proceedings of the 3rd Interna-
tional Workshop on Spoken Language Technologies for Under-
Resourced Languages, Cape Town, South Africa, 2012, pp. 54–
59.

[34] A. Stolcke, “Srilm-an extensible language modeling toolkit,” in
Seventh international conference on spoken language processing,
2002.

[35] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M.
Rush, “Opennmt: Open-source toolkit for neural machine
translation,” in Proc. ACL, 2017. [Online]. Available: https:
//doi.org/10.18653/v1/P17-4012

[36] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enrich-
ing word vectors with subword information,” Transactions of the
Association for Computational Linguistics, vol. 5, pp. 135–146,
2017.

2852

