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Abstract
A Supervised Locality Preserving Projection (SLPP) method is
employed for channel compensation in an i-vector based speak-
er verification system. SLPP preserves more important local
information by weighing both the within- and between-speaker
nearby data pairs based on the similarity matrices. In this paper,
we propose an improved SLPP (P-SLPP) to enhance the channel
compensation ability. First, the conventional Euclidean distance
in conventional SLPP is replaced with Probabilistic Linear Dis-
criminant Analysis (PLDA) scores. Furthermore, the weight
matrices of P-SLPP are generated by using the relative PLDA
scores of within- and between-speaker pairs. Experiments are
carried out on the five common conditions of NIST 2012 speak-
er recognition evaluation (SRE) core sets. The results show that
SLPP and the proposed P-SLPP outperform all other state-of-
the-art channel compensation methods. Among these methods,
P-SLPP achieves the best performance.
Index Terms: speaker verification, supervised locality preserv-
ing projection, probabilistic linear discriminant analysis

1. Introduction
Speaker verification (SV) is used to verify a person’s claimed
identity from voice characteristics. In recent years, i-vector [1]
based speaker verification systems have become very popular
because of their good performance and ability to compensate
for within-speaker variations. An i-vector is generated by pro-
jecting the Gaussian mixture model (GMM) mean shifted super-
vector onto a low-rank total variability (TV) subspace while re-
taining the speaker identity. This way, an i-vector can be viewed
as a front-end for further modeling.

As the i-vectors are based on one total variability space that
contains speaker and channel variability information, compen-
sation techniques are required to limit the effects of channel
variability in the i-vector speaker representations. Here, linear
discriminant analysis (LDA) [2] is a standard channel compen-
sation approach. The main objective of LDA is to describe the
differences between the groups in terms of canonical variants,
which are linear combinations of the original variables. Cur-
rently, locally weighted LDA (LWLDA) [3] and non-parametric
discriminant analysis (NDA) [4] are also employed in the s-
peaker recognition field, and they can alleviate some of the
limitations identified for LDA, where the underlying distribu-
tion of classes is supposed to be Gaussian and unimodal. In
combination with the well-known PLDA [5] backend, the i-
vector/PLDA framework dominates the research field of text-
independent speaker recognition.

In this paper, we ask the following question: Is LDA, NDA
or LWLDA optimal for i-vector based speaker verification? The
answer is often neglected. The Gaussian distribution, which is

the premise of LDA, cannot be guaranteed, particularly when
speech recordings are collected in the presence of noise and
channel distortions. To cope with the above noted issue, N-
DA measures the scatter matrices on a local basis using the K-
nearest neighbor (K-NN) rule. However, a neglected problem
is that the intrinsic geometry of the data is destroyed after LDA
or NDA projection. On the other hand, LWLDA only weigh-
s the within-speaker i-vectors, and the local information of the
between-speaker data is neglected. These problems make these
methods open to improvement.

In this paper, we explore supervised locality preserving pro-
jection (SLPP) [6] for channel variability compensation. Dif-
ferent from the above algorithms, SLPP can perform embed-
ding that preserves more important local information in the da-
ta based on the similarity matrices. We evaluate SLPP against
LDA, NDA and LWLDA on the five common conditions of
NIST 2012 SRE core sets [7]. Experiments show that SLP-
P outperforms LDA, NDA and LWLDA. Furthermore, a nov-
el PLDA-based SLPP (P-SLPP) algorithm is proposed to learn
the speaker identity subspace, where the PLDA scores are inte-
grated into the objective function of the SLPP. In the P-SLPP
algorithm, we modify the weight matrices of SLPP with the
relative PLDA scores of within- and between-speaker pairs to
enhance channel compensation ability. As far as we know, this
is the first combination of the channel compensation algorithm
and the backend classification algorithm in a speaker verifica-
tion task. Experiments show that the proposed P-SLPP offers
further improvement over conventional SLPP and achieves the
best performance among all the abovementioned algorithms.

The remainder of this paper is organized as follows. Sec-
tion 2 gives a brief review of LDA, NDA and LWLDA. Section
3 presents the application of SLPP for speaker verification, as
well as the proposed P-SLPP algorithm. In addition, we in-
terpret the relationships among SLPP, LDA and their variants.
Section 4 presents the experimental setup and the results of this
study. In Section 5, we summarize our work and discuss future
work.

2. Dimensionality reduction methods
2.1. LDA

LDA computes an optimum linear projection to obtain a more
discriminative and lower-dimensional representation of the i-
vector. It is obtained by maximizing the between-speaker scat-
ter while simultaneously minimizing the within-speaker scatter
[2]. Let Sw and Sb be the within- and between-speaker scatter
matrices.

Sw =
S∑

s=1

ns∑

i=1

(xsi − xs)(x
s
i − xs)

T , (1)
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Sb =
S∑

s=1

ns(xs − x)(xs − x)T , (2)

where S is the total number of speakers, ns is the number of
i-vectors corresponding to the sth speaker, xsi is the ith i-vector
belonging to speaker s, and xs and x are the global mean i-
vectors for speaker s and all speakers, respectively.

Moreover, as described in [8], the above scatter matrices
can further be written in a pair-wise manner:

Sw =
1

2

n∑

i,j=1

Wij(xi − xj)(xi − xj)
T , (3)

Sb =
1

2

n∑

i,j=1

Bij(xi − xj)(xi − xj)
T , (4)

whereWij andBij , which respectively determine the influence
of the scatter of different i-vector pairs on within- and between-
speaker scatter matrices, are given by

Wij =

{
1
ns

zi = zj = s

0 zi 6= zj
, (5)

Bij =

{
1
n
− 1

ns
zi = zj = s

1
n

zi 6= zj
, (6)

where n is the total number of i-vectors and zi and zj are the
speaker class labels.

After calculating the scatter matrices, the LDA linear pro-
jection A ∈ Rd×r (d > r) is defined as:

A = argmax
A

[tr((ATSwA)−1ATSbA)]. (7)

This optimization problem has an analytical solution in which
the r columns of A are the eigenvectors corresponding to the
largest eigenvalues of S−1

w Sb [2]. Through the optimized pro-
jection matrix A, the transformed i-vector y of the input x can
be computed as follows:

y =ATx. (8)

2.2. NDA

The NDA approach is the same as LDA except that the global
mean i-vectors in (1) and (2) are replaced with local sample
averages computed based on the K-NN of individual samples
[4]. In more detail, the scatter matrix Sb is given by

Sb =
S∑

s=1

S∑

l=1
l 6=s

ns∑

i=1

ws,li (xsi −Ms,l
i )(xsi −Ms,l

i )
T
, (9)

where ws,li is the weighing function, while Ms,l
i is the local

mean of K-NN samples for xsi from class l.
Sw is obtained in a similar fashion to Sb except that the

weighting function is set to 1 and local gradients are computed
within each class. After both Sw and Sb are obtained, A can be
computed as in LDA.

2.3. LWLDA

LWLDA, which is a localized variant of LDA, computes Sw
and Sb in the same way as in (3) and (4), except that the weight
matrices are calculated as

Wij =

{ Hij

ns
zi = zj = s

0 zi 6= zj
, (10)

Bij =

{
Hij(

1
n
− 1

ns
) zi = zj = s

1
n

zi 6= zj
, (11)

where the affinity matrix H weighs the within-speaker i-vectors
to preserve the complex structure of the within-speaker data. It
can be chosen by a Gaussian function that varies with the local
density of data samples [3].

Once Sw and Sb are computed, the transformed matrix is
formed by calculating the eigenvectors of S−1

w Sb.

3. Supervised locality preserving projection
3.1. SLPP

The conventional LPP [9] uses the K-NN rule to preserve the
neighborhood structure of the data set; however, it is an unsu-
pervised method, and hence, the class information is neglected.
To overcome this issue, a supervised LPP (SLPP) was proposed
by Shen et al. in [6]. This SLPP algorithm constructs both
within- and between-speaker K nearest neighbor graphs through
which two weight matrices are defined. Based on the within-
and between-speaker weight matrices, SLPP attempts to ensure
that the nearby within-class data pairs are kept closer, while the
nearby between-class data pairs are mapped farther apart. That
is different from LWLDA, which only focuses on preserving
the local information of the within-speaker i-vectors. The lo-
cal information of both within- and between-class data are pre-
served in the SLPP method. Moreover, SLPP only weighs the
data pairs which are connected in the neighbor graph so that the
unimportant pairs of i-vectors are not considered for optimiza-
tion.

For more details, given a set of i-vectors X =
[x1,x2, ...,xn], the objective function of SLPP is defined as
follows:

max

∑
ij

(yi − yj)2Bij
∑
ij

(yi − yj)2Wij

, (12)

where yi = aTxi denotes the ith sample after projection, and
a is a transformation vector that needs to be estimated; B and
W, as described in detail later, are symmetrical between- and
within-speaker weight matrices, respectively. Through some al-
gebraic derivation [6], the objective function in Eq. (12) can be
written as

max
aTXLBXTa

aTXLWXTa
, (13)

where LB = DB − B and LW = DW −W are the Lapla-
cian matrices, and D is a diagonal matrix; DB

ii =
∑
j

Bij , and

DW
ii =

∑
j

Wij .

The transformation vector a that maximizes the objective
function is given by the largest eigenvalue solution to the gen-
eralized eigenvalue problem:

XLBXTa = λXLWXTa. (14)

When we map i-vectors into an r-dimensional subspace, the
projection matrix A is composed of the r largest eigenvalues
solution to Eq. (14).

3.1.1. Weight Matrices

As shown in objective function Eq. (12), the weight matrices
have great influence on the SLPP method. The detailed calcula-
tion procedure of the weight matrices is stated as follows:
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1) Construct the within-speaker connected graph: suppose
that xi and xj are from the same speaker, xi and xj are
connected if xi is among K-NN samples for xj , or xj
is among K-NN samples for xi.

2) Construct the between-speaker connected graph: sup-
pose that xi and xj are from the different speakers, xi
and xj are connected if xi is among K-NN samples for
xj , or xj is among K-NN samples for xi.

3) Compute the within-speaker weight matrix W based on
the within-speaker connected graph:

Wij =

{
exp(−‖xi−xj‖2

τ
) xi and xj are connected

0 others
(15)

4) Compute the between-speaker weight matrix B based
on the between-speaker connected graph:

Bij =

{
exp(−‖xi−xj‖2

τ
) xi and xj are connected

0 others
(16)

where τ is a scaling factor.
As described in Eqs.(15) and (16), the weight matrices mea-

sure the similarity between a pair of the connected i-vectors
by Euclidean distance. Based on the similarity matrices, SLP-
P learns a linear projection by making yi and yj closer if the
within-speaker samples xi and xj are connected, while making
them farther part if xi and xj are connected in the between-
speaker graph.

3.2. P-SLPP

In the i-vector/PLDA-based speaker verification system, there
is a great gap between the channel compensation algorithm and
the final scoring method. In the final scoring step, the simi-
larity score between the speaker model and the test utterance
is measured by PLDA scoring, while the Euclidean distance is
always adopted in calculating the weight matrices for the con-
ventional SLPP method. Furthermore, the SLPP separately uses
the within- and between-speaker similarity in Eqs.(15) and (16),
which has a low discriminative ability.

Motivated by this, we replace the Euclidean distance with
the PLDA score [10] in Eqs.(15) and (16). More specifical-
ly, we integrate the within- and between-speaker similarity into
one equation. Through these two important modifications, the
channel compensation method is more consistent with the final
similarity calculation, and the i-vectors after channel compensa-
tion are more discriminative. Suppose xWik and xBik are the kth

(1 ≤ k ≤ K) K-NN samples for xi in within- and between-
speaker data, respectively, and a relative PLDA score Rik is
defined as

Rik = plda score(xi,x
B
ik)− plda score(xi,xWik ), (17)

where the PLDA score between a pair of i-vectors is computed
as

plda score = wT
i Qwi+wT

j Qwj+2wT
i Pwj+const, (18)

where w is a centralized i-vector x after length normalization
and matrices P and Q are obtained after PLDA training [11].

By the sigmoid function with a scaling factor, we normalize
Rik between 0 and 1.

Gik =
1

1 + e−Rik/τ
(19)

I-vector
Training Set

Length
Normalization

PLDA
Training

Projection AP-SLPP
Training

P Q Mean

Figure 1: The training procedure of P-SLPP.

The normalized weight approaches 0.5 if the within- and
between-speaker PLDA scores are equal (i.e., Rik = 0). Next,
the weight matrices are given by

W
′
ij =




Gik

if xj is the kth within-speaker K-NN sample
for xi

0 else
(20)

B
′
ij =




Gik

if xj is the kth between-speaker K-NN sample
for xi

0 else
(21)

Note that W
′

and B
′

are not symmetric. To solve this problem,
the final weight matrices can be obtained as

Wij = max(W
′
ij ,W

′
ji), (22)

Bij = max(B
′
ij , B

′
ji). (23)

After the weight matrices are computed, the remaining pro-
cedure of P-SLPP is similar to that of SLPP. Figure 1 shows the
training procedure of P-SLPP, which could be divided into the
following steps:

1) Obtain P , Q and the mean i-vector through the PLDA
offline training.

2) Compute the within- and between-speaker matrices us-
ing Eqs. (17)-(23).

3) Calculate the projection matrix A using Eq. (14).

The above P-SLPP effectively combines the channel com-
pensation algorithm (SLPP) with the backend algorithm (PL-
DA), both of which adopt the PLDA scores as similarity mea-
sures. This preserves the strength of SLPP, which only weigh-
s the connected data pairs. In addition, P-SLPP improves the
conventional SLPP by giving a heavy penalty in the objection
function if the PLDA score between xi and xBik is higher than
that between xi and xWik . Such a penalty mechanism takes both
the within- and between-speaker similarity into account at the
same time and better separates the between-speaker data pairs.

3.3. Relationship between SLPP and LDA

In this section, we can see that there is a close relationship be-
tween SLPP and LDA and that SLPP can also be viewed as a
variant version of LDA. From Eq. (14), XLBXT can be refor-
mulated as

XLBXT =
n∑

i=1

(
n∑

j=1

Bij)xix
T
i −

n∑

i,j=1

Bijxix
T
j

=
1

2

n∑

i,j=1

Bij(xix
T
i − xix

T
j − xjx

T
i + xjx

T
j )

= Sb.
(24)
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Similarly, we have XLWXT = Sw; hence, the projection ma-
trix A trained from SLPP is given by the eigenvectors corre-
sponding to the r largest eigenvalues of S−1

w Sb as well. From
the above deduction, we can see that the only difference among
LDA, LWLDA and SLPP (also including P-SLPP) is from the
weight matrices W and B. It shows that the weight matrices are
the key to these algorithms and further explains the rationality
of improving the weight matrices in the P-SLPP algorithm.

4. Experiments and analysis of results
4.1. Experimental data and evaluation metric

Experiments are carried out on the core conditions of the NIST
SRE 2012 database [7]. The total trials contain utterances from
five common conditions (CC). There are approximately 1.16
million trials, with 21,248 target trials and 1,143,112 non-target
trials. All the models are gender-dependent. The data from pre-
vious years’ evaluations, Switchboard and the Mix5 dataset are
used as a training set.

The performance is evaluated in terms of equal error rate
(EER) and the minimal detection cost function (minDCF) de-
fined in the NIST 2012 SRE evaluation protocol.

4.2. System configurations

Each speech signal is parameterized by 39-dimensional per-
ceptual linear predictive (PLP) features containing delta and
delta-delta coefficients. The i-vector extractor is based on the
GMM/i-vector framework [1]. Since the DNN/i-vector system
[12] has good complementarity with the GMM/i-vector system,
we also report our results using the score fusion of the two sys-
tems with equal weights.

4.2.1. GMM/i-vector system

For the GMM/i-vector system, a gender-dependent 1024-
component GMM-UBM with diagonal covariance matrices is
trained using a subset of the training set. After UBM is trained,
two different total variability matrices are trained to meet the
test conditions of telephone and microphone channels. The first
matrix with dimension 400 is trained using the telephone da-
ta, and the second matrix with dimension 200 is trained using
the interview data. Then, these two matrices are stacked to for-
m a matrix with dimension 600, which is used to extract the
i-vectors for all utterances.

4.2.2. DNN/i-vector system

For the DNN/i-vector system, an eight-layer DNN with 792 in-
put nodes, 2048 nodes in each hidden layer and 6004 output
nodes is trained on approximately 300 hours of clean English
telephone speech from Switchboard datasets. The input layer of
the DNN is composed of 11 (5+1+5) frames, where each frame
corresponds to 24-dimensional log Mel-filterbank features plus
their first and second order derivatives. Once DNN is trained,
the following procedures are the same as those of the GMM/i-
vector system except where the posteriors are produced by the
DNN.

4.2.3. I-vector transformation and PLDA scoring

After extracting the 600-dimensional i-vectors, one of the men-
tioned channel compensation technologies is applied to project
i-vectors to a low-dimensional subspace. Since the prior G-
PLDA model follows the Gaussian distributions, data whitening

Table 1: Results for GMM/i-vector (EER%/minDCF*1000)

Methods CC1 CC2 CC3 CC4 CC5

LDA 4.01/372 1.65/218 3.41/380 3.30/351 2.57/290
NDA 3.91/361 1.68/228 3.25/364 3.25/348 2.53/304

LWLDA 3.85/355 1.55/217 3.33/373 3.34/352 2.42/296
SLPP 3.85/352 1.53/214 3.30/359 3.32/343 2.49/296

P-SLPP 3.84/362 1.38/211 3.37/341 2.73/307 2.30/278

Table 2: Results for fusion system (EER%/minDCF*1000)

Methods CC1 CC2 CC3 CC4 CC5

LDA 3.53/357 1.04/167 3.36/350 3.16/248 1.70/214
NDA 3.57/346 1.10/174 3.17/354 3.11/250 1.70/218

LWLDA 3.27/349 1.00/163 3.21/352 3.27/249 1.71/208
SLPP 3.16/335 0.87/172 3.16/329 3.03/254 1.62/206

P-SLPP 3.34/329 0.87/160 3.41/311 2.32/209 1.47/199

and length normalization are adopted before PLDA. After this
pre-processing, the PLDA algorithm is adopted as the backend
classifier for speaker verification, where the sizes of the speaker
and channel matrices are 250 and 10, respectively.

4.3. Results and analysis

Table 1 presents the performance of the GMM/i-vector system
with different channel compensation methods in NIST 2012
SRE. It can be observed that SLPP outperforms LDA, NDA and
LWLDA in most conditions. On average, the proposed P-SLPP
gives the best performance among all these methods in terms of
EER or minDCF in all common conditions. The performance
of the fusion system is also reported in Table 2, which shows
a more obvious improvement provided by SLPP and P-SLPP.
Specially, in terms of EER, P-SLPP provides a 23.4-29.1% rel-
ative improvement over SLPP, NDA, LDA and LWLDA in the
case of CC4. We believe this is due to the combination of SLP-
P projection and PLDA scoring, which removes the unwanted
variations resulting from changes in noise and channel.

5. Conclusions
In this study, we employ SLPP for channel compensation in an
i-vector based speaker verification system. Compared with the
conventional LDA and its variants (NDA and LWLDA), SLPP
can make better use of local information based on within- and
between-speaker connected graphs. To meet the PLDA back-
end, we propose P-SLPP to improve SLPP based on the relative
PLDA scores. Moreover, we uncover that the only difference
among these methods (except NDA) is from the weight matri-
ces. The experimental result shows that SLPP and the proposed
method outperform LDA, NDA and LWLDA, and among these
methods, P-SLPP achieves the best performance.

P-SLPP is the effective combination of channel compen-
sation and backend classification. Accordingly, in our future
study, we will continue to focus on the combination methods.
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