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Abstract
We discuss the real-time scoring logic for a self-administered
oral reading assessment on mobile devices (Moby.Read) to
measure the three components of children’s oral reading fluency
skills: words correct per minute, expression, and comprehen-
sion. Critical techniques that make the assessment real-time on-
device are discussed in detail. We propose the idea of produc-
ing comprehension scores by measuring the semantic similarity
between the prompt and the retelling response utilizing the re-
cent advance of document embeddings in natural language pro-
cessing. By combining features derived from word embedding
with the normalized number of common types, we achieved a
human-machine correlation coefficient of 0.90 at the participant
level for comprehension scores, which was better than the hu-
man inter-rater correlation 0.88. We achieved a better human-
machine correlation coefficient than that of the human inter-
rater in expression scores too. Experimental results demonstrate
that Moby.Read can provide highly accurate words correct per
minute, expression and comprehension scores in real-time, and
validate the use of machine scoring methods to automatically
measure oral reading fluency skills.
Index Terms: assessment, oral reading fluency, literacy, ex-
pression, comprehension

1. Introduction
Moby.Read is a new, self-administered, fully automated oral
reading fluency assessment developed for K-5 students [1, 2, 3].
The prototype system was built on an iPad mini 4 as a stand-
alone app. In each test session, students are asked to read a
word list, read an easy practice passage, and read three grade-
level passages. After reading one passage aloud, students are
asked to retell the passage in their own words, put in all the de-
tails they can remember, then answer two short questions aloud.

Fluency is the ability to “read text with speed, accuracy, and
proper expression” [4]. In this paper, we focused our automatic
scoring logic on passage reading (PRead) to produce Words
Correct Per Minute (WCPM) and reading expression scores,
on passage retelling (PRetell) to produce reading comprehen-
sion scores. WCPM is a score based on the number of words
read correctly in a minute of reading, an informative measure
of oral reading fluency [5]. Expression is the degree that a stu-
dent can clearly express the meaning and structure of the text
through appropriate intonation, rhythm, phrasing, and empha-
sis that will enhance understanding and enjoyment in a listener
[6]. Comprehension is the degree that a student can retell major
and minor concepts/themes/facts in the original passage. Scor-
ing of expression and comprehension will emphasize reading
for meaning instead of reading for speed. Automatic scoring
can reduce the need for teacher training and help ensure consis-
tency.

Scores are produced in real-time on-device. The advantages
of real-time on-device are that we may provide scores and feed-
back immediately; we may select appropriate reading materials

adaptively based on the past or real-time performance of a spe-
cific student to level the student more accurately, etc.

2. The mobile speech recognition system
Although automatic speech recognition (ASR) is a compute-
intensive process, feasible, on-device speech recognition was
researched [7, 8, 9, 10, 11]. With the recent introduction of the
neural processing unit (NPU) or neural engine to mobile de-
vices, we expect that complex acoustic models and language
models can be implemented on the latest mobile devices to
achieve better performance. Speech recognition on-device will
not be a barrier for a wide class of mobile applications. In the
following subsections, we introduce our system.

2.1. Acoustic models

The acoustic model used for speech recognition on-device is a
Deep Neural Network - Hidden Markov Model (DNN-HMM)
[12] that contains 4 hidden layers and 300 p-norm (p = 2) non-
linearity neurons with a group size G = 10 [12] per hidden layer,
trained using all of Librispeech’s training sets [13]: 960 hours
of clean native (L1) reading data. The sample rate for the on-
device speech recognition is 8,000. The inputs of the DNN
are 40-dimensional log mel-filterbank energies calculated on a
25ms window every 10ms, and the output dimension is 2,064
context-dependent triphone states. Both left and right context
are 6.

There are several model mismatch issues that may degrade
the ASR performance: 1) an adult acoustic model was used
to recognize children speech; 2) narrowband was used; 3) the
acoustic model was trained using very clean/quiet recordings,
so the ASR accuracy may diminish with very noisy data. De-
spite these issues, the overall on-device acoustic model perfor-
mance is good since we deal with very low perplexity situations
with suitable language models.

In our previous work [14, pp. 24], the model mismatch ef-
fect was researched, such as checking the child test set perfor-
mance when adult acoustic models are used. We concluded that
DNNs seem to be good at learning invariant representations of
speech signals, and adult data could be more suitable for learn-
ing speech representations. When using mismatch adult acous-
tic models, the performance damage to constrained item types is
not so severe. Still, after we collect enough child responses and
transcriptions, we plan to train a better acoustic model by com-
bining Librispeech’s data with children’s speech data. Domain-
specific training data always help [14].

2.2. Language models

Item-specific rule-based language models (RBLMs) [15, 16] are
built for PRead. No data from this study was used to tune the
RBLMs. Item-specific 3-gram language models were built for
PRetell, using all the human transcriptions we have for the spec-
ified item, around 59 transcriptions per item with the averaged
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vocabulary size 230. The comprehension scores reported in this
paper are biased by the fact that we used the same data to train
the language models. We assume that this bias is not big since
we deal with a very narrow domain.

2.2.1. Advantages of item-specific language models

With the constraints that the decoding should be finished in real-
time and the decoding devices are mobile, the ASR accuracy de-
creases significantly when the language model is big. We deal
with a narrow domain with expected answers. Building a small
and constraint language model can help to decode quickly and
achieve good accuracy. It helps to overcome the challenge that
children’s speech contains larger acoustic variability because of
their variable vocal tract length and formant frequencies [17]
and some other model mismatch challenges. It gives the bene-
fit of the doubt for accent or non-native speech. Many spoken
assessment applications fall to the category that has a narrow
domain with expected answers. Item-specific language models
with smaller vocabulary sizes are preferred, and are often used
in practice for spoken assessment applications [14].

2.2.2. The rule-based language model

For each expected passage, sentence, phrase or token sequence,
a simple direct graph is built that has a path from the first word
in the sequence to the last word [15, 16]. Different direct arcs
with probabilities are added to represent different classes of
changes made by subjects, such as skipping, repeating, insert-
ing, and substituting. Adding a back-off arc will allow domain
words to be spoken in any order. Both changes and probabil-
ities can be learned from data. Using domain data can help
to build better language models. The graphs generated from
several different expected answers can be combined together
with the expected probabilities as the final RBLM. Naturally,
RBLMs give the expected answer sequences higher probabili-
ties, the less likely orders lower probabilities. RBLMs can be
compiled on-line. It gives us the flexibility to recognize any
contents that are generated dynamically. Humans can add arbi-
trary reasonable rules to be used by RBLMs directly.

2.3. The ASR decoder

The decoding engine [18] is based on KALDI [19]. The modi-
fications were made to utilize mobile devices’ single instruction
multiple data (SIMD) and digital signal processor (DSP) frame-
works. The supporting utils were built to convert RBLMs to
finite state transducers (FSTs) for decoding. When we start to
record responses, the engine decodes progressively every 0.128
seconds. The decoding real-time factor floats around 0.2 on an
iPad Mini 4. We chose the acoustic scale so that insertions and
deletions are balanced to avoid ignoring the speech signal.

2.4. An ASR performance comparison

Although Google cloud speech API [20] (GSpeech) can be used
off-the-shelf without any additional modifications, the word er-
ror rates (WERs) are rather high on our children reading and
retelling tasks. The main reason is that GSpeech is designed for
recognizing any general English with a broad language model.
Its purpose is too general to perform well in this narrow domain.
For the 282 PRead responses, GSpeech achieved WER 34.8%
(n=23,736) and our on-device ASR engine achieved WER
10.7%. For the 282 PRetell responses, GSpeech achieved WER
32.9% (n=11,070) and our on-device ASR engine achieved
WER 16.3%. Our server-side ASR engine that used broadband

speech, featured more elaborate acoustic models, and utilized a
larger beam value can achieve WER 9.6% for the 282 PRetell
responses.

3. Machine scoring methods
3.1. Word correct per minute

The number of correct words is derived by using the ASR result
to do edit-distance with the prompt. The insertions caused by
disfluencies were ignored. The time duration is from the begin-
ning of the first correct word to the end of the last correct word
according to the ASR result. The session level WCPM is the
median WCPM value from the three passages, a widely used
procedure in measuring oral reading fluency [21].

3.2. Expression

Although our engine generates a lot of features, only relevant
and normalized ones were used (Table 1). These features don’t
depend on the length of the materials produced. The difference
between log seg prob and nlog seg prob, iw log seg prob
and niw log seg prob is that for the latter: a) when we built
native duration statistics, the durations were normalized by the
articulation rate of each response; b) when we computed seg-
mental probabilities, the durations of segments were normalized
by the articulation rate of the corresponding response. These
can help remove the effects of the speaking rate, which usually
has a strong correlation with human expression scores.

Table 1: The features used to predict expression scores.

feature description
log leading sil Log the leading silence duration.

art Articulation rate: the number of phonemes per second
of speech.

ros Rate of speech: the number of phonemes per second of
speech and inter word pauses.

log seg prob The averaged log likelihood segmental probability for
phonemes [22] based on Librispeech native statistics.

iw log seg prob
The averaged log likelihood segmental probability for
inter word silences [22] based on Librispeech native
statistics.

nlog seg prob The normalized version of log seg prob.
niw log seg prob The normalized version of iw log seg prob.

amloglike The acoustic model log likelihood of the recognized re-
sult normalized by the total number of frames.

lmloglike The language model log likelihood of the recognized
result normalized by the total number of frames.

3.3. Comprehension

In natural language processing (NLP), it is becoming popular
to use neural network based unsupervised learning algorithms
to represent variable-length pieces of texts, such as words, sen-
tences, passage, and documents as fixed-length real value fea-
ture representations that encode the meaning of texts. For these
methods (e.g. word2vec [23] or doc2vec [24]), the training ob-
jective is usually to learn better word/document vector repre-
sentations so that they can be used to predict the nearby words
with higher probabilities. As a consequence, in the trained con-
tinuous vector space semantically similar words or documents
are mapped to similar positions. Meaningful results (e.g. king -
man + women = queen) can be obtained by adding/subtracting
these vectors. These methods achieved better performance in
many NLP tasks [23, 24].

We seek semantic similarity measurements between the
prompt passages and the retelling responses that are automated
and objective. The vector representations of documents could
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be a good fit. Comparing to previous works [25, 26], our task
could be easier to handle since the domain has been constrained
by the prompts.

The number of words spoken or the number of different
words used could be a good indicator of the similarity if the
subjects are in good-faith, although such nonlinguistic surface
features are too superficial. We are more interested in the mea-
surements that can check semantic similarity directly, and don’t
have strong correlations with these surface features. The num-
ber of common spoken tokens or the number of common spoken
types could be a good semantic similarity indicator, but it could
fail when a subject uses semantic similarity words or phases
that are not in the prompt. Using word2vec or doc2vec may fix
some issues. Assume that every response can be converted to a
vector that represent the whole content of the response, the se-
mantic similarity between two documents may be computed by
checking the distance or similarity of two vectors. As a result,
we proposed features w2v ed, d2v cos, LSI cos. All potentially
useful similarity metrics for the comprehension scores we are
interested in are listed in Table 2.

As words can be represented by real number vectors, we
may use the centroid of the word vectors of the text to represent
the text. Usually it makes sense to remove stop words before
computing the centroid. We did observe the performance gain
by doing so. We can use either cosine similarity or Euclidean
distance between two vectors to serve as a measure of the sim-
ilarity between two texts. For w2v, we observed a significant
performance gain by using Euclidean distance. We used the
simple average of the word vectors of the text as the centroid
to represent the text. We didn’t observe any performance gain
when using TF-IDF weighted average of word vectors. Further-
more, we may use different statistical functions to aggregate the
word vectors to represent the document. We concatenated 4 sta-
tistical vectors (mean, minimum, maximum, media) together to
form a 4 * 300 = 1200 dimension vector for a document. It
can produce better results. We hypothesize that the distribution
of word embedding vectors plays an important role to represent
the document. The statistical vectors may catch some properties
of the distribution.

We used Googles word2vec pre-trained vectors that were
trained on part of Google News dataset (about 100 billion
words). The archive is available online as GoogleNews-vectors-
negative300.bin.gz [27]. The model contains 300-dimensional
vectors for 3 million words and phrases.

Table 2: Some potential useful similarity metrics between
prompts and responses for comprehension scores.

feature description

ntokens n The number of words were spoken in the response normalized
by the number of words in the prompt.

ntypes n
The number of different words were spoken in the response nor-
malized by the number of different words in the prompt. It is a
measure of the vocabulary size in the response.

nctypes n

The number of the same words between the prompt and the
response normalized by the number of different words in the
prompt. It is a measure of the overlapped vocabulary size be-
tween the prompt and the response.

w2v ed
Euclidean distance between two documents’ statistical vector
representations that are derived from word embeddings after re-
moving stop words.

d2v cos Cosine similarity between two documents’ vector representa-
tions based on doc2vec [24].

wmd Word mover’s distance [28] between two documents based on
word embeddings after removing stop words.

LSI cos
Cosine similarity between two documents’ vector representa-
tions derived from Latent Semantic Indexing based on the term
vector model [29].

4. Experimental results
A preliminary study of the Moby.Read system was conducted
with a sample of 99 children in grades 2-4 from four different
elementary schools [1, 2]. Recordings of PRead and PRetell
of three grade-level unpracticed passages from the preliminary
study were used. 5 children who barely produced meaningful
responses (silence or inaudible) were excluded from this study.
The total number of subjects in this study are 94. The details
about the raters’ qualifications, training procedures, rubrics and
how to derive human WCPM, expression and comprehension
scores can be found in [2].

The results reported were produced on a simulation plat-
form that mimicked the conditions as if it were run on mobile
devices. The real-time turnaround was verified on mobile de-
vices. The system was published on Apple App Store [3].

4.1. Word correct per minute scores

A scatter plot of WCPMs between human and machine was
shown in Figure 1. The correlation between two expert raters
is 0.991. It repeated the conclusion we knew: machine can pro-
duce reliable WCPMs for oral reading fluency [16, 30, 31].

Figure 1: Session-level scatter of median WCPM.
We listened to the 6 recordings of two outliers. Both spoke

quite softly and one mumbled the readings for certain time pe-
riods. The consequence of low Signal-to-Noise Ratio (SNR)
makes it difficult to recognize certain part of signals. Google
cloud speech API only recognized 25.2% words correctly and
ignored most of the signal for these 6 recordings. The same
kind of outliers and issues for kids were identified before [32].
Addressing low SNR effectively by instructions, e.g. avoiding
high background noise and low speech volume, is the key solu-
tion we are looking for. “Be in a QUIET place” is on the sign-in
page of the app. Speaking clearly instead of mumbling so that
others can hear is the requirement. Reliable scores depend on
audible speech.

4.2. Oral reading expression scores

Every recording of PRead was rated by 3 different human raters
for their ‘Oral Reading Expression’ scores on 6 categories, with
5 representing the best rating and 0 representing silence or irrel-
evant or completely unintelligible material. The rating distribu-
tion is: 0, n=5; 1, n=37; 2, n=95; 3, n=263; 4, n=304; 5, n=142.
The average of the correlations of human raters who correlate
with the average of others at the response level is 0.795. For the
3 pairs of raters, the average of the inter-rater correlations at the
response level was 0.740.

The correlations among features we discussed in Subsec-
tion 3.2 and human ratings at the response level are shown in
Table 3. The speech rate features have the highest correlations
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with human ratings. Putting more weights on the features nor-
malized by speaking rate may downplay the role of rate.

Table 3: Feature cross correlations for expression scores.

hv 1 2 3 4 5 6 7 8
1:log leading sil -0.18
2:ros 0.82 -0.22
3:art 0.77 -0.20 0.92
4:log seg prob 0.81 -0.19 0.90 0.92
5:iw log seg prob 0.50 -0.17 0.62 0.38 0.45
6:nlog seg prob 0.60 -0.11 0.65 0.69 0.65 0.40
7:niw log seg prob 0.31 -0.12 0.39 0.14 0.23 0.87 0.27
8:amloglike 0.59 -0.10 0.61 0.49 0.58 0.40 0.60 0.28
9:lmloglike -0.57 0.25 -0.82 -0.69 -0.68 -0.70 -0.62 -0.53 -0.55

The final session-level expression is an average of individ-
ual expression scores. If a response doesn’t have enough infor-
mation to generate an expression score, it will be ignored when
computing the final session-level expression score.

Using a neural network model 10-fold cross-validation, we
achieved correlation 0.856 (0.902) in response (session) level.
This is better than a linear regression model 0.840 (0.887). We
made sure different folds have no overlap of the same subjects.

4.3. Comprehension scores

Every recording of PRetell was rated by at least 4 different hu-
man raters for their ‘Retelling Comprehension’ scores on 7 cat-
egories, with 6 representing the best rating and 0 representing
silence or irrelevant or completely unintelligible material. On
average, there are 4.5 ratings per response. The rating distri-
bution is: 0, n=25; 1, n=128; 2, n=173; 3, n=288; 4, n=266;
5, n=203; 6, n=179. The average of the correlations of human
raters who correlate with the average of others at the response
level is 0.842. For the 11 pairs of raters who have more than
100 common ratings, the average of the inter-rater correlations
at the response level was 0.786.

Table 4: Feature cross correlations for comprehension scores.

hv 1 2 3 4 5 6
1:ntokens n 0.82
2:ntypes n 0.84 0.95
3:nctypes n 0.87 0.85 0.90
4:w2v ed -0.83 -0.78 -0.84 -0.84
5:wmd -0.85 -0.75 -0.79 -0.92 0.88
6:d2v cos 0.71 0.61 0.60 0.73 -0.68 -0.79
7:LSI cos 0.65 0.52 0.54 0.72 -0.65 -0.83 0.83

We calculated the cross correlations (Table 4) at the re-
sponse level among features we discussed in Subsection 3.3
and human ratings. These features were extracted using hu-
man transcriptions. The performances of d2v cos and LSI cos
depend on the training settings: e.g. the training corpus, ran-
dom seeds and setting parameters. In Table 4 we reported the
best results we achieved for d2v cos and LSI cos from several
trials. Because of the limited domain data, the potential over-
fitting and weaker correlations comparing to others, we didn’t
explore them further. All other results didn’t involve overfitting.

It can be seen that the normalized number of different words
spoken in the response is a good indicator of comprehension.
When the subject is in the good-faith (it is almost always the
case for K-5 grade kids), it makes sense since comprehension
will depend on the complexity of the materials produced. By the
nature of PRetell, a lot of term overlap is expected. The table re-
flects that only considering the words in the prompt can improve
the performance significantly. Among the features that utilize
the word embedding similarities by considering and weighting
the semantically similar words that are not in the prompt and
are ignored by nctypes, w2v ed and wmd are good ones.

There is no setting parameter for the features nctypes n,
w2v ed, wmd. We noticed that wmd has a strong correlation
with nctypes n. At the same time, wmd used the same word
embedding as w2v ed. In that sense, w2v ed could be better to
enhance the final performance. We scaled nctypes n, w2v ed to
the range [0, 1] and then used their simple average as our final
metric and achieved r=0.888 at the response level.

All the comprehension performance discussed so far is
based on human transcriptions. In the real application, we used
the ASR recognition results to do the computation. It drags
down the performance a little bit. Following the same proce-
dures discussed but using the ASR transcriptions, we achieved
r=0.903 at the session level (Figure 2). After collecting enough
data, using a complex supervised machine learning model that
can combine different features discussed in Table 2 together
may further improve the final performance.

Figure 2: Session-level scatter of comprehension.

5. Conclusions
We built an oral reading assessment system on mobile devices
that delivers reliable WCPM, expression, and comprehension
scores in real-time for first-language learners in grades 2-4 [3].
Our RBLMs relieve the requirement of field data collection for
new reading passages to produce WCPM and expression scores;
however, data collection is still required for passage retellings
in order to build suitable language models to achieve the best
performance. The proposed idea of producing comprehension
scores by measuring the semantic similarity between the prompt
passage and the retelling response utilizing the document em-
beddings works well. For both expression and comprehension
scores, the human-machine correlations are better than the hu-
man inter-rater ones, which validates the effectiveness of the
system. The findings support the use of machine scoring meth-
ods to measure oral reading fluency skills automatically.

We expect the system can be highly useful beyond the ap-
plication discussed here, such as in second-language learning
for adults as well as children. Assessing in real-time means the
system can rapidly adapt to a learner’s performance, which can
be used by learning systems to condition immediate, personal-
ized feedback and select the next challenge within a session.
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