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Abstract
We attempted to estimate the speech intelligibility of binaural
speech signal with additive noise. The assumption here was
that both the target speech signal and the noise source are direc-
tional sources. In this case, when the speech and noise sources
are located away from each other, the intelligibility generally
improves since the human auditory system can potentially seg-
regate these two sources. However since intelligibility tests are
commonly conducted using monaurally recorded signals, the
intelligibility is often under-estimated compared to live human
listeners since this segregation capability is neglected. We have
previously proposed to use binaurally recorded signals to esti-
mate the speech intelligibility and compared the estimation ac-
curacy of several machine learning methods on this signal. We
showed that random forests (RF) combined with the better ear
model and Mel filter banks gives the highest accuracy compared
to other methods, such as the support vector machines or logis-
tic regression. In this paper, we attempt to introduce deep neural
networks (DNN) to this task. Initial evaluation results show that
the use of DNN can provide a modest improvement over RF.
Index Terms: speech intelligibility, objective estimation, bin-
aural speech, DNN

1. Introduction
With most of the adult population in developed and emerging
countries owning a mobile phone, speech communication is
conducted in all sorts of environments. For example, it may
be conducted in a reverberant office space with ample back-
ground speech and noise, on a busy street crossing with auto-
mobile noise, or a quiet private office. Thus, techniques for
efficient and accurate speech quality assessment is necessary to
guarantee an acceptable level of communication quality over
these networks. Speech intelligibility is a measure that quan-
tifies the identification accuracy of the received speech content
over a transmission channel and is a crucial measure of speech
communication quality [1, 2].

Speech intelligibility measurement is conducted by having
human subjects listen to degraded read speech samples, and
having them identify the contents of the samples, measuring
the accuracy of this identification. The contents of the sam-
ple are typically syllables, words or sentences. The test stimuli
need to cover all aspects of the language being tested, such as
the phonetic context. The test also needs to be conducted by
a large panel of human listeners so that the variations in the
responses by individuals are averaged out. Thus, speech intelli-
gibility tests are generally time-consuming and expensive.

Accordingly, research into the estimation of speech intelli-
gibility without the use of human listeners have been conducted.
For example, the Articulation Index (AI) by French and Stein-
berg estimates the speech intelligibility from the perceptual av-

erage SNR measurements in critical bands [3]. Steeneken and
Houtgast proposed the Speech Transmission Index (STI), which
uses artificial speech signals transmitted over the channel under
test, and estimates the speech intelligibility by measuring the
weighted average modulation depth of the received signal [4].

However, these estimation methods base their measure-
ments on monaural signals. In a realistic environment, for ex-
ample in a crowded classroom or a large conference hall, human
subjects listen to speech signals using both ears. This can poten-
tially lead to better identification of the test signal since the hu-
man auditory system can potentially discriminate sources trav-
eling from different directions. In other words, if the test speech
signal travels from a different direction than the noise source,
the human listener may be able to selectively listen to the test
signal. However, speech intelligibility is often measured using
monaural signals, recorded using a single microphone. This can
lead to a significant underestimation of the speech intelligibility
since this will ignore the human ability to discriminate speech
from noise when these arrive from different directions.

There has been work on the estimation of speech intelligi-
bility from binaural signals. For example, Wijngaarden et al.
have proposed an extension of the STI for handling binaural
signals [5]. They have shown that speech intelligibility estima-
tion accuracy on binaural signals can be improved compared to
conventional STI that use monaural signals.

Recently, Liu et al. have proposed using blind source sepa-
ration (BSS) to separate the target speech source and the masker
in binaural signals, and estimate the intelligibility using ob-
jective estimation measures of the separated target speech [6].
They fed the separated target speech source to three binaural
estimation methods; the binaural distortion-weighted glimpse
proportion (BiDWGP), the binaural speech intelligibility index
(BiSII), and the binaural speech transmission index (BiSTI).
They have shown that relatively high accuracy is possible, but
artifacts of the BSS block tend to affect the accuracy of this
estimation. The same group of authors also recently proposed
a non-intrusive method to estimate the binaural speech intelli-
gibility [7]. They use deep neural networks (DNN) to blindly
separate the target speech source from the competing sources,
concurrently apply blind-source localization (BSL), and apply
intrusive binaural estimation methods to the separated speech.
The DNN is applied to the log-power spectra calculated from
the Short-Time Fourier Transform (STFT) coefficients of the
binaural signal. The separated speech source is fed to the
BiDWGP and the Binaural Short-Term Objective Intelligibil-
ity (BiSTOI). They have shown very high estimation accuracy
with both of these estimation measures for speech mixed with
relatively stationary noise (babble, speech-shaped noise, and
speech-modulated noise).

We have also been attempting to improve the estimation ac-
curacy of binaural speech intelligibility [8, 9, 10]. We showed
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that relatively high estimation is possible using a 16-band Mel
filter-bank (Mel-16), a better ear model, and using Random
Forests (RF) to map these objective measures to speech intel-
ligibility [10]. In this paper, we further attempt to improve the
estimation accuracy using DNN to estimate the intelligibility
directly from the outputs of the Mel-16 filter-banks.

This paper is organized as follows. The next section out-
lines the estimation method for binaural speech intelligibility.
This is followed by a brief introduction of the newly-introduced
DNN used to estimate the binaural intelligibility in this pa-
per. We then describe the evaluation experiment of the binaural
speech intelligibility with the DNN and the previously-studied
RF. Finally, we give the conclusion and plans for further re-
search.

2. Estimation of binaural speech
intelligibility

Figure 1 shows a block diagram of the binaural speech intelli-
gibility estimation method being investigated. In this method,
we attempt to estimate the binaural intelligibility of a mixed
speech and noise source arriving from various directions. We
assume that not only the target speech, for which we are mea-
suring the intelligibility but also the noise source is a directive
source. An example of such directive noise source is babble
from a group of bystanders talking loudly from a specific direc-
tion or an automobile passing by from one direction to the other.
Obviously, such directional noise source can potentially have a
more profound effect on the target speech compared to diffuse
noise sources.

We trained a mapping function between an objective mea-
sure calculated using the binaural signal to the subjective in-
telligibility. In order to do so, we first compiled a database of
target speech traveling from various directions by convolving
monaural target speech samples with the corresponding Head
Related Transfer Functions (HRTFs). We also prepared noise
sources from different directions by convolving this with the
same HRTFs. Then, these two sources were mixed to compile
a database of localized speech and noise with various azimuth
combinations.

We compared the following three objective measures to
model the binaural signal.

• The Better-Ear (BE) Model: Fig. 2 depicts the BE
model, which selects either the left or the right channel
based on the channel-wise SNR. The channel selection
is conducted frame by frame. The SNR is calculated in
sub-bands.

• The Band-wise Better-Ear (BBE) Model: Fig. 3 depicts
the BBE model, which selects either channel for each
of the sub-band based on the sub-band SNR of left and
right channel. The selection is also conducted in each
temporal frame.

• The Pooled Channel Model: Fig 4 depicts the pooled
channel model, which simply splits the binaural signal
into sub-channels, calculates the SNR by sub-band, and
simply pools all SNR values in all sub-bands for both
channels.

Two configurations for the sub-bands were used in the cal-
culation of objective models. First, 25 critical bands used in
the AI standard [3] was used as a reference. This sub-band
configuration is commonly used in other measures such as the
frequency-weighted SNR [11].

We also attempted to use the Mel-16 filter bank, where the
frequency scale is converted into the Mel scale, and divided into
equal Mel frequency bands. In previous work [10], we found
that the use of 16 bands gives the highest prediction accuracy,
and so we will be using this configuration here.

We conducted subjective intelligibility evaluations using
the compiled database to collect a database of subjective intelli-
gibility to be used as supervisory signals in the training. Twelve
subjects, all in their early twenties with normal hearing, partici-
pated in these evaluations. The objective measure of each of the
mixed signals is calculated, and the mapping function from this
measure to the supervisory subjective intelligibility is trained.
In [8, 9, 10], we attempted the use of some popular machine
learning techniques, such as Support Vector Regression (SVR)
and RF, to improve the mapping accuracy at all SNR ranges
compared to the conventional Logistic Regression (LR).

The trained functions were then used to estimate the intel-
ligibility of speech mixed with unknown noise.

3. DNN for speech intelligibility estimation
In this paper, we introduce a DNN for speech intelligibility esti-
mation of binaural signals. Objective measures were calculated
using each of the three methods described in the previous sec-
tion. For the BE and BBE methods, one value for each of the
sub-band is used as input to the DNN. For critical bands, this
comes to 25 values, and for the Mel-16 sub-bands, 16 values.
For the Pooled Channel model, one value for each of the stereo
channel is output for each sub-bands, i.e. 50 values for the crit-
ical sub-bands, and 32 for the Mel-16 sub-bands.

From initial experiments, we found that the use of 2 hid-
den layers gave the best estimation accuracy. The number of
units for each of the layers for the critical sub-bands were 128,
128, 128, and 1 for the pooled measure, and 64, 128, 64, and
1 for the other two measures. Likewise, for the Mel-16 sub-
bands, they were 64, 128, 64, and 1 for the pooled measure,
and 32, 64, 32, and 1 for the other two measures. These were
also empirically chosen through initial experiments. The acti-
vation functions used were the exponential linear unit (ELU)
for the hidden layers and the sigmoid for the output layer. The
input was scaled using the RobustScaler, and batch normaliza-
tion was used. The optimizer used was the Adamax optimizer.
The dropout rate was set to 0.5, and the batch size to 64. The
training generally stopped at about 100 epochs with the early
stopping option.

4. Comparison of estimation accuracy using
DNN with other machine learning methods

The speech intelligibility estimation accuracy was evaluated for
localized speech mixed with localized competing noise at vari-
ous azimuth combinations on the horizontal plane.

4.1. Experimental conditions

We selected 60 words (30 word-pairs) out of the Japanese Di-
agnostic Rhyme Test (DRT) word list [12], which is a Japanese
version of the DRT, a two-to-one forced selection word intelligi-
bility test [13, 14]. The words were read by one female speaker.
Three noise samples were used. Two were selected from the
JEIDA noise database [15]; A/C fan coil, and local train. In
addition to these, babble noise was selected from the Signal
Processing Information Base (SPIB) database [16]. We used
speech mixed with babble and A/C fan coil noise at SNR lev-
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Figure 1: Block diagram of speech intelligibility estimation
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 Figure 2: Better-Ear objective measure

els −6, −12, and −18 dB, respectively to train the models, and
then tested the trained models on the local train noise, mixed at
the same SNR levels.

Both the speech and noise samples were localized at vari-
ous azimuths by convolving with the KEMAR HRTF, available
from MIT [17]. The azimuths for the speech and noise sources
were either 0 (directly in front of the listener), ±45, or ±90
degrees (positive degrees to the right, negative degrees to the
left of the listener). All sources were located on the horizontal
plane, at the same height as the listeners’ ears. These signals
were then split into sub-bands, its output fed to either the BE,
the BBE, or the Pooled Channel model, and finally, the intelli-
gibility is estimated from these using RF or DNN.

As the baseline for conventional estimation, we also esti-
mated the intelligibility using a monaural signal. Thus, the
stereo signals were mixed down to a single channel signal.
Then, this signal was split into 25 critical bands. Classic LR
was then applied to this measure to estimate the subjective in-
telligibility.

Estimation for this baseline and RF was reported in [10]
and recited here for comparison.
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Figure 3: Band-wise Better-Ear objective measure
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Figure 4: Pooled-Channel Objective Measure

4.2. Results and discussion

Tables 1 and 2 shows the RMSE and Pearson’s correlation be-
tween the subjective and the estimated intelligibility with the
various combinations of binaural objective measure calculation
and mapping functions. As can be seen, DNN with Mel-16
sub-bands give the best results, with an RMSE of 0.115 and
correlation of 0.938. This is modestly better than the best re-
sult with RF and Mel-16 sub-bands, which we reported in [10].
Thus, it seems that DNN can potentially improve the intelligi-
bility estimation accuracy over other machine learning methods.
However, we suspect that the amount of data used for training
is rather limited in our experiments in order to decently train a
DNN of this magnitude. We believe that the estimation accu-
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Table 1: RMSE Between Subjective and Estimated Intelligibility

ML Filter Front-end
Function Bank BE BBE Pooled Mono

LR (baseline) Critical - - - 0.208
RF Critical 0.140 0.150 0.159 -

Mel-16 0.115 0.114 0.126 -
DNN Critical 0.141 0.122 0.139 -

Mel-16 0.126 0.115 0.137 -

Table 2: Pearson’s Correlation Between Subjective and Esti-
mated Intelligibility

ML Filter Front-end
Function Bank BE BBE Pooled Mono

LR (baseline) Critical - - - 0.568
RF Critical 0.879 0.861 0.792 -

Mel-16 0.920 0.921 0.891 -
DNN Critical 0.903 0.914 0.882 -

Mel-16 0.920 0.938 0.884 -

racy, as well as the generalization to other types of noise, can be
further improved with more training data that include a wider
range of noise types.

Fig. 5 plots the subjective vs. estimated intelligibility. Al-
though there are some outliers, most of the estimations are close
to the equal rate line (diagonal line) even for unseen noise data.
On the other hand, Fig. 6 shows the plot for the baseline condi-
tion; use of a monaural signal with the critical band and logis-
tic regression. As can be seen, the DNN estimation is a large
improvement over this baseline condition. In fact, the base-
line condition seems to fail to predict the lower SNR conditions
completely. This may be because LR cannot generalize to noise
conditions outside of the trained noise conditions, while DNN
does a much better job of generalization.

5. Conclusion
We introduced DNN to estimate the speech intelligibility of
binaural signals. Both the speech and competing noise were
assumed to be directional sources, traveling from varying az-
imuths on the horizontal plane. Binaural signals were split into
sub-bands, better ear models were applied, and DNN was used
to map these output to estimated speech intelligibility. Esti-
mation accuracy using DNN was compared to the accuracy us-
ing RFs, which we have shown in the previous study to give
the most accurate results when combined with Mel frequency
filter banks and the better ear model, which selects either left
or the right channel with higher estimated SNR. It was shown
that DNN can potentially improve the estimation accuracy com-
pared to estimation using RFs, with an RMSE of 0.115 and
Pearson Correlation of 0.938.

We believe we still have not trained the DNN with enough
training data, and can still improve its accuracy with additional
data, even though we already have a very accurate estimator.
For starters, we would like to add more noise types to the degra-
dation. Also, we currently use simple SNR values of each filter
bank output for the objective measure. However, we would like
to test with other distance measures that are motivated to sim-
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Figure 5: Distribution of subjective vs. estimated Intelligibility
using the band-wise better ear model and DNN
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Figure 6: Distribution of subjective vs. estimated Intelligibility
using the monaural model and LR

ulate the auditory characteristics more accurately, such as the
Log Area Ratio or Weighted Spectral Slope.
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