
Open Language Interface for Voice Exploitation (OLIVE)

Aaron Lawson, Mitchell McLaren, Harry Bratt, Martin Graciarena, Horacio Franco,
Christopher George, Allen Stauffer, Christopher Bartels, Julien VanHout

 SRI International, California, USA
aaron.lawson@sri.com

Abstract
We propose to demonstrate the Open Language Interface for
Voice Exploitation (OLIVE) speech-processing system, which
SRI International developed under the DARPA Robust
Automatic Transcription of Speech (RATS) program. The
technology underlying OLIVE was designed to achieve
robustness to high levels of noise and distortion for speech
activity detection (SAD), speaker identification (SID),
language and dialect identification (LID), and keyword
spotting (KWS). Our demonstration will show OLIVE
performing those four tasks. We will also demonstrate SRI’s
speaker recognition capability live on a mobile phone for
visitors to interact with.
Index Terms: speech activity detection, speaker and language
identification, keyword spotting

1. Proposal
We propose to demonstrate the OLIVE speech-processing
system, which SRI International developed under the DARPA
Robust Automatic Transcription of Speech (RATS) program.
The technology underlying OLIVE was developed to achieve
robustness to high levels of noise and distortion. The specific
tasks that we will demonstrate include: speech activity
detection (SAD) [1] (detecting the presence of speech, not just
an open channel); speaker identification (SID) [2] (finding
and/or tracking speakers of interest); language and dialect
identification (LID) [3] (detecting languages and dialects
from a set of languages of interest); and keyword spotting
(KWS) [4] (detecting specific keywords and phrases).
The OLIVE speech-processing system is based on
client/server architecture. Clients connect to the server through
a ZeroMQ message-passing application programming
interface (API), which can connect to multiple user interfaces
or external systems. The graphical user interface (GUI) clients
are written in Java, and the core speech-processing engine is
written in Python. Our demonstration will show two graphical
user interfaces, reflecting (1) a forensic or close analysis use
case and (2) a triage or “big data” use case.
The forensic use case (figure 1 below) enables users to select
audio segments to perform speaker identification, speech
activity detection, and language identification. Users can also
add to or create new speaker ID or language ID models. To
help with speaker enrollments, functionality is included that
enables users to diarize a file given a small (5–10 second)
snippet of the talker’s speech. This feature is being extended to
language ID, and other features are being adapted for speech
activity detection, to identify keywords, and to provide a

phonetic transcript in the file. The triage use case is when a
significant amount of waveforms need to be processed. The
system first discards the waveforms which contain no speech,
and then sends the rest for processing by the speaker, language
and keyword spotting plugins.
We will demonstrate two ways to use the OLIVE system, as
shown in figure 2 below. The first way is with the two
graphical user interfaces (forensic/close and triage/big-data
GUIs). The second way is using the OLIVE API to integrate
the server with an existing system.
This technology is under continuous development and
refinement based on user feedback, and OLIVE is designed
such that adding new capabilities is practically automatic, once
the underlying algorithms are coded as plugins.

2. Acknowledgements
This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under
Contract No. HR0011-15-C-0037. The views, opinions, and/or
findings contained in this article are those of the authors and
should not be interpreted as representing the official views or
policies of the Department of Defense or the U.S.
Government. Distribution Statement A: Approved for Public
Release, Distribution Unlimited.

3. References
[1] Graciarena, M, Alwan, A, Ellis, D, Franco, H, Ferrer, L, Hansen,

JHL, Janin, A, Lee, BS, Lei, Y, Mitra, V, Morgan, N, Sadjadi,
SO, Tsai, TJ, Scheffer, N, Tan, LN & Williams, B 2013, “All for
one: Feature combination for highly channel-degraded speech
activity detection,” Proc. of INTERSPEECH, pp. 709–713, 14th
Annual INTERSPEECH 2013, Lyon, France, 25–29 August.

[2] M. McLaren, N. Scheffer, M. Graciarena, L. Ferrer, and Y. Lei,
“Improving speaker identification robustness to highly channel-
degraded speech through multiple system fusion,” Proc.
ICASSP, 2013, pp. 6773–6777.

[3] Y. Lei, L. Ferrer, A. Lawson, M. McLaren, and N. Scheffer,
“Application of convolutional neural networks to language
identification in noisy conditions,” Proc. Odyssey-14, Joensuu,
Finland, June 2014.

[4] J van Hout, V Mitra, Y Lei, D Vergyri, M Graciarena, A
Mandal, H Franco, “Recent improvements in SRI’s keyword
detection system for noisy audio,” Proc. of Interspeech, Baixas,
France, 2014, pp. 1727–1731.

Copyright © 2016 ISCA

INTERSPEECH 2016: Show & Tell Contribution

September 8–12, 2016, San Francisco, USA

377

Figure 1: The OLIVE Forensic Analysis Interface enables close editing of audio files, enrollment of new speakers,

scoring of segments, speech activity segmentation, and semi-supervised speaker diarization.

Figure 2: The OLIVE system, showing the three main components, from top to bottom:
the graphical user interfaces, the OLIVE system, and the task-specific plugins.

CORE SERVICES
(plugin) INTERFACE

PLUGINS

ENTERPRISE (client-
facing) API

Plug-in are specific tasks (like Language ID or
KeyWord Spotting) that add functionality to the

OLIVE system. Plugins are enabled by dropping them
into the plugins directory

Core services API defines how a plugin must be
written to enable that task to be used by the OLIVE

system.

The enterprise API describes how clients accesses
plugin functionality through the industry-standard

messaging protocol, ZeroMQ

Native GUI for live
streaming and file analysis

OPEN LANGUAGE INTERFACE FOR VOICE EXPLOITATION (OLIVE)

Native GUI for batch
Processing of files

USG Client
systems

Client-specific interfaces

Commercial
Client

systems

SID KWS LID SAD

378

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index

	Abstract Book
	Abstract Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Aaron Lawson
	Also by Mitchell McLaren
	Also by Harry Bratt
	Also by Martin Graciarena
	Also by Horacio Franco
	Also by Chris Bartels
	Also by Julien VanHout
