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Abstract 
There is considerable need to utilise linguistically meaningful 
measures of second language (L2) proficiency that are based 
on perceptual cues used by humans to assess pronunciation. 
Previous research on non-native acquisition of vowel systems 
suggests a strong link between vowel production accuracy and 
speech intelligibility. It is well known that the acoustic and 
perceptual identification of vowels rely on formant 
frequencies. However, formant analysis may not be viable in 
large-scale corpus research, given the need for manual 
correction of tracking errors. Spectral analysis techniques have 
been shown to be a robust alternative to formant tracking. This 
paper explores the use of one such technique – the discrete 
cosine transform (DCT) – for modelling English vowel spectra 
in the productions of non-native English speakers. Mel-scaled 
DCT coefficients were calculated over a frequency band of 
200-4000 Hz. Results show a statistically significant 
correlation between coefficients and the proficiency level of 
speakers, and suggest that this technique holds some promise 
in automated L2 pronunciation teaching and assessment. 

Index Terms: DCT coefficients, automated assessment, 
vowel, acquisition  

1. Introduction 
There is considerable interest in developing automated 
assessment systems as a more resource-efficient alternative to 
the traditional approach of using human assessors to evaluate 
second language (L2) proficiency. Computer-assisted 
language learning (CALL) systems provide the user with the 
freedom to self-regulate their learning in a way that is not 
possible in a traditional classroom setting. In CALL systems, 
the computer acts interactively as an aid in the presentation 
and assessment of the material to be learned. However, despite 
advances in the development of CALL systems, pronunciation 
assessment and teaching continue to lag behind other 
components of language competence (e.g. writing and 
listening). One potential reason for this is the limitation on 
such systems to process and evaluate oral responses within a 
computer interface [4].  

The vast majority of studies on automated assessment of 
speaking proficiency examine the use of ASR technology (e.g. 
[4], [5], [6], [7], among others). However, given the 
multiplicity of factors contributing to the quality of oral 
proficiency, it is a great challenge deriving useful metrics to 
quantify assessment. The traditional ASR approach focuses on 
speaking rate, likelihood-based pronunciation features, and so 
on, arguably without sufficient attention to features derived 
from acoustic phonetic measurements [8]). Acoustic phonetic 

features may contain important perceptual cues that are used 
by humans to judge pronunciation that may be useful in L2 
speech assessment.  It is evident from a review of the existing 
literature that there is much need to develop empirically 
grounded criteria that link assessment metrics to concrete 
linguistic features that can be made explicit to the L2 learner. 
Such an approach would also enable CALL system developers 
to provide relevant feedback to learners who may want to 
improve their proficiency (e.g. to progress from the basic A 
level to a more advanced C level on the Common European 
Framework of References for languages (CEFR) assessment 
scale). One such concrete linguistic feature is vowel quality, 
which will be the focus of this paper.  

Research suggests a relationship between vowel 
production accuracy and L2 speech intelligibility, with various 
effects of the L1 vowel system (e.g. [1], [8]). Thus, assessing 
vowel production of a speaker can provide a perceptually valid 
index of speech intelligibility [22], and when applied to non-
native speech acquisition a metric based on vowel 
characteristics could be a relatively easy way to provide 
feedback within a CALL context.                                                                    

It is well known that formant frequencies contain the 
primary information for the perceptual distinction of vowels 
[3]. Recent studies that have examined the use of formant 
characteristics in the automated assessment of speech 
intelligibility (e.g. [9]; [10]) have established a link between 
proficiency and vowel formant characteristics. It is regrettable, 
however, that no serious attempt has been made in the vast 
majority of these studies to normalise speaker differences in 
vocal tract sizes. This makes it extremely difficult to interpret 
or generalise from the reported findings. What is needed, 
therefore, is a robust measure that normalises speaker variation 
due to physiological or anatomical differences while leaving 
phonetic variation intact.  

[11] applied a normalisation procedure in modelling 
formant frequencies as a metric in automated pronunciation 
assessment. However, these authors conceded that although 
formant analysis has proven to be a useful metric when 
applied to good quality data, it may not be a viable measure in 
automated assessment given the need to manually correct 
tracking errors. Critical band analysis has been proposed as a 
vowel identification technique when formant tracking is 
problematic [2] due to formant tracking error or poor data 
quality. 

The present study seeks to explore the use of one such 
technique – the discrete coefficient transformation (DCT; [3]) 
in the automated assessment of L2 pronunciation. 
Furthermore, we examine the effects of two normalisation 
procedures: Mel-scale warping and the Lobanov 
normalisation. Finally, we also explore the potential effect of 
native language setting in the phonetic realisation of English 
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vowels by non-native speakers. Specifically, this study 
addresses three primary research questions: 

1. Using DCT coefficients as a measure: how do the spectral 
characteristics of speakers vary as a function of 
proficiency? 

2. What is the effect of applying an extrinsic normalisation 
technique (i.e. the Labanov normalisaton)?  

3. Gujarati speakers do not make a distinction between tense 
and lax vowels (/i:/ vs. /ɪ/ and /u:/ vs. /ʊ/, whilst Thai 
speakers do, but in a way that gives primacy to duration 
over vowel quality cues, unlike English. We ask: is there 
an influence of the L1 vowel settings of non-native 
speakers on their L2 pronunciation? 

2. Method 

2.1. Speakers 

80 speakers (age range 20-35 years) whose native language 
was either Gujarati (30 females 18 males) or Standard Thai 
(18 females, 14 males) were randomly selected from a larger 
pilot dataset. Based on the judgement of several expert 
graders, the speakers were placed into 5 proficiency levels 
according to the CEFR: A1 (15 speakers); A2 (15 speakers); 
B1 (21 speakers); B2 (15); C1 (14 speakers). There were no 
speakers at the C2 level in English.  

2.2. Dataset 

The dataset was from a Cambridge English BULATS test of 
business English comprising elicited spontaneous speech (in 
the form of a short bio and a monologue testing the business 
knowledge of the candidate). The data was recorded in 
BULATS testing centres in Gujarat, India and in Bangkok, 
Thailand (at 44.1 KHz sampling rate and a 16-bit resolution). 
In total, there were 1300 recordings in the dataset used in this 
study. 

2.3. Analysis 

2.3.1. Data processing 

The data were orthographically transcribed using multiple 
crowd-sourcers and a speech recogniser according to the 
procedure described in [12]. The transcribed data were then 
automatically segmented and aligned using an HTK-based 
algorithm to determine word and phone boundaries. All data 
analysis was carried out in EMU-R [3], which has a two-way 
interactive interface to Praat ([14]) for converting annotations 
and R for signal processing (see [3, pg. 39] for more on this.) 
To avoid the effects of vowel centralisation due to lack of 
stress and the influence of /r/ consonants, which would affect 
feature values, only vowel tokens that appeared as full vowels 
in stressed syllables of content words and which did not 
precede an /r/ were included in the analysis reported in this 
study. As we aimed to explore the possibility of using vowel 
characteristics in automated assessment, no manual corrections 
were made to the phone-aligned data and no further contexts 
were specified. 

2.3.2. Discrete Cosine Transform 

The discrete transform (DCT) is a transformation that 
decomposes a signal into a set of coefficients at half cycles 

(k=0, 0.5, 1…1/2(N-1)) and provides numerical correlates for 
trajectory shape. When applied to the spectrum, it has been 
shown that the DCT coefficients are equivalent to cepstral 
coefficients [23]. 

The DCT decorrelates the spectral coefficients and allows 
them to be modelled with diagonal Gaussian distributions. The 
number of parameters needed to represent a frame of speech is 
significantly reduced, which in turn reduces memory and 
computation requirements. In spectral analysis, it has been 
shown that the first three coefficients (C0, C1, C2) are 
proportional to the mean, linear slope and curvature of the 
signal respectively [13]. In the present study, we converted the 
speech data to EMU format, then warped the frequency axis to 
the Mel scale and calculated DCT coefficients for vowel 
targets over a frequency band of 200Hz up to and including 
half the Nyquist rate of 8000Hz. This was done in Emu-R 
(according to the procedure described in [3]). The formula for 
the DCT used in the study was according to [15]: ��cos (θ) is 
the cosine function to model the trajectories; for an N-point 
Mel spectrum, x(n), extending in frequency from n=0 to N−1 
points, the mth DCT-coefficient �� (m=0,1,2) was calculated 
with DCT form: 

�� �
���

�
�� � � ���

�� � � ���

��

���

���

�� 

Where �� is �
�
 when m=1, and 1 when m ≠1. 

The following vowels were chosen to give a good overall 
coverage of the vowel space: ae [æ], eh [ɛ], ih [ɪ], iy [i:], oh 
[ɒ], uh [ʊ], uw [u:]. Coefficients C1 and C2 equate to F1-F2 
for vowels; thus we were able to derive a vowel discriminant 
of averaged positions similarly to the F1xF2 vowel plane. It is 
worthwhile noting that there are well-established clustering 
methods that can be applied using a probabilistic framework. 
However, these are most relevant in contexts where there is no 
regard for the phonetic interpretation of the data. The quality 
of tense-lax vowels is highly dependent on F1-F2 settings and 
the DCT method, as a F1-F2 parameterisation, takes dynamic 
changes in the target vowels into account. Similar features 
have been used in previous studies (e.g. [23]), although not for 
non-native vowel production data. 

2.3.3. Log Euclidean distance ratio 

One way of quantifying vowel-space differences between 
speakers is to measure the Euclidean distance between a vowel 
and the centre of the vowel space. Whereas the Lobanov 
normalisation is applied to remove speaker variation (due to 
sex and age, etc.), the log Euclidean distance ratio, which is 
calculated per speaker as the distance of a vowel to other 
vowels they produce, is generally applied in sociolinguistics 
research e.g. [18] to address a specific hypotheses about, for 
example, coarticulatory effects and vowel shifts. In the study 
reported in this paper, it is applied specifically to determine 
whether Gujarati and Thai speakers at different CEFR levels in 
English were making a distinction between the tense and lax 
vowel pairs. We hypothesised that the Gujarati speakers will 
have difficulty differentiating these vowel pairs, given that 
they do not make such a distinction in their native language. 
For the Thai speakers, we hypothesised that they would likely 
not have such a difficulty as tense-lax distinction exists in their 
L1, notwithstanding the fact that they tend to rely more on 
duration cues than on vowel quality [24], whereas English 
speakers primarily use vowel quality differences. The 
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following form where x, y and a, b represent vowel spectra 
vectors (DCT coefficients), gives the Euclidean distance: 
�������	�� �� � � �� � � � � � � � �

� �� � ���. 

3. Results 
Out of the 80 speakers, the datasets for three of the Gujarati 
females were rejected as there were no vowel tokens in their 
speech (there were only silent pauses and other non-linguistic 
noises.) The 77 speakers produced vowel tokens as follows: ae 
(272), eh (308), ih (487) iy (460), oh (409), uh (44), uw (296). 
/uh/ was produced by only some speakers (mostly at the C1 
level) and therefore excluded from further analysis. 

3.1. Mel-scaled DCT coefficients  

In order to address RQ1 whether the CEFR level of the 
speakers correlates with their vowel production (measured by 
MEL-scaled DCT coefficients) we calculated the Spearman 
rank order correlation coefficient between CEFR levels and 
the DCT-coefficients. 

Overall, the results indicated a statistically significant 
correlation between CEFR level and the two DCT measures 
for six of the vowels, as shown in the vowel space lattice in 
Figure 1.  

 
 

 

Figure 1: Vowel space by CEFR level. 

For the vowel /ae/, for example, the Spearman’s rho revealed a 
statistically significant relationship between CEFR level and 
DCT measures: DCT-1 (��=.50, p<.01), DCT-2 (��=.72, 
p<.01). The results were generally the same for the Mel-scaled 
transformed data and the Lobanov transformed data, although 
the latter was less correlated with gender (��=.18, n.s.) than the 
former (���=.25, n.s.). 
        We further conducted a mixed effects model with DCT 
coefficient (two levels: DCT-1 and DCT-2) as the dependent 
variable and CEFR level (5 levels) and native language (two 
levels: Thai vs. Gujarati) as the random factors. The results 
showed a main effect of CEFR level on both coefficient 
measures (DCT-1: F=(20, 230) = 3.97, p<=.001; DCT-2: F(20, 
230) = 5.94, p<.001). There was no main effect of native 
language. Bonferroni posthoc tests revealed that on both 
dimensions the three lowest CEFR level speakers (A1, A2, 

B1) were different from the B2 and C1 speakers (all at 
p<.001). B2 and C1 speakers realised a significantly larger 
distance between the two measures (suggesting a wider vowel 
space). This finding (depicted in Figure 2 below) is also 
evident in the previous analysis (Figure 1) which shows the 
separation between vowels becoming much more distinct as 
the B2 level and C1 levels. 
 

 

Figure 2: Estimated DCT coefficient mean by CEFR 
level. 

3.2. Log distance ratio 

For space reasons, only the results for /i:/ vs. /ɪ/ will be 
presented here (however, note that similar results were 
obtained for /u:/ vs. /ʊ/.) The result of a mixed model with 
Euclidean distance as the dependent variable and proficiency 
and native language as the random factors showed a 
significant difference in the distance from /i:/ to the vowel 
centre according to proficiency (F(1,28)=4.028, p<.01), but 
not according to native language. Bonferroni post hoc tests 
revealed that, with the exception of the C1 level, all groups 
failed to realise a statistically significant difference between 
the tense-lax vowel pair. The overall patterns are given in 
Figure 3.  
 

 

 Figure 3: Log Euclidean distance ratio (y-axis) of /i:/ 
to the centroids of /ɪ/ by CEFR level (x-axis). Midpoint 
on y-axis is intermediate between the two vowels. 

4. Summary and discussion  

4.1. Summary  

We compared the phonetic realisation of vowel characteristics 
in the English of native Gujarati and Thai speakers in order to 
determine (a) whether non-native vowel productions are 
correlated with proficiency level and (b) the utility of vowel 
characteristics as a metric in CALL-based assessment of 
pronunciation. While formant frequencies have been found to 
correlate with CEFR level, their application to automatic 
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assessment has been problematic, given the need to apply 
complicated formant tracking algorithms [3]. We therefore 
applied an equivalent measure that encodes the overall shape 
of the spectrum whilst being robust when applied to low 
quality data. The study revealed that: 
 (1) normalisation does not yield better results (only minor 
increase for gender)  
(2) DCT-1 and DCT-2 of vowels /ae/ [æ], /eh/ [ɛ], /ih/ [ɪ], /iy/ 
[i:], /oh/ [ɒ], /uw/ [u:] correlate with CEFR level 
(3) better rated speakers show a relatively larger vowel space 
(4) high proficiency speakers show a further distance of their 
tense vowel /i:/ to their lax vowel /ɪ/ 
(5) there was no significant difference between speaker groups 
who have a tense-lax distinction in their native language and 
speakers who do not. 

4.2. Discussion 

The results revealed a statistically significant correlation 
between the Mel-scaled DCT coefficients and CEFR level for 
most of the target vowels. This finding is noteworthy since the 
Mel-scale is an auditory perceptual scale with direct 
correspondence with the way humans perceive speech. 
However, the link between perception and vowel quality 
articulation is a complicated one, and automated systems can 
never make the kinds of perceptual distinctions humans make 
when judging speech. One main difficulty posed for automated 
non-native assessment is how to normalise variation in gender. 
We investigated the use of an additional data reduction 
technique – the Lobanov normalisation. Previous research 
suggests that this procedure outperforms others in normalising 
speaker differences [16]. However, when applied to our data, 
the results revealed no overall significant change in correlation 
between Mel-scaled DCT coefficients and proficiency level, 
on the one hand, and Lobanov-normalised DCT coefficients 
and proficiency level, on the other. However, the fact that the 
Lobanov-normalised data were less correlated with gender 
than the MEL-scaled coefficients suggests that the procedure 
may possibly be the better option when there is need to jointly 
model male and female speech, as is the case with automated 
assessment of the phonetic realisation of vowel quality. 

Overall, the findings showing that there is general 
correlation between DCT-based vowel features and 
pronunciation proficiency, as judged by human assessors, is an 
interesting one. This suggests that vowel characteristics should 
indeed be taken into account in the teaching and assessment of 
pronunciation. DCT coefficients are closely related to 
articulation and the axes of a vowel quadrilateral, given that 
they encode the overall shape of the spectrum which for 
vowels is determined by F1 (proportional to vowel height) and 
F2 (proportional to vowel backness). This makes it useful for 
CALL or other applications where clustering methods may not 
be ideal, such as when the teaching and assessment of 
pronunciation are linked to the phonetic interpretation of the 
speech data. The results further suggest that some 
characteristics for accurate discriminacy of vowels (and thus 
to speech intelligibility) may only emerge at the B2 level (at 
least for the non-native speakers in this study.)  It might be 
argued that the assessment of non-native proficiency need not 
be modelled on native speech, as a lower proficiency level 
learner may indeed aim to reach a higher level of proficiency 
on the CEFR, rather than to attain native-level proficiency at 
the outset. However, this finding suggests that it may 
nonetheless be worthwhile to compare non-native speakers 

with native English speakers in order to adequately 
discriminate between the more advanced levels (e.g. C1 and 
C2 CEFR levels.) 

Whereas native speakers of Standard Southern British 
English (SSBE) make a phonemic distinction between tense 
and lax vowel pairs, Gujarati speakers do not. We 
hypothesised that Gujarati speakers may therefore have 
difficulty in producing this distinction, as a transfer 
mechanism from their L1. We predicted the opposite result for 
the Thai native speakers, given that their native language 
differentiates between tense and lax vowels – albeit in a way 
that contrasts with the target language by giving primacy to 
duration cues over vowel quality cues.  

The fact that learners of different L1 backgrounds were 
indistinguishable by the vowel quality metrics was somewhat 
surprising and suggests some degree of generalisability of the 
findings. It further suggests that learners who are acquiring a 
second language with a vowel system generally similar to their 
own may not have an advantage over learners whose L1 and 
L2 vowel systems are less similar. Nonetheless, it might also 
be argued that the strategy used by the Thai learners may 
actually be different from the Gujarati speakers. For instance, 
it is possible that the Thai speakers were indeed making a 
distinction, but by using their native language devices. This 
would lend support to the idea that it may be necessary to take 
the L1 vowel system of speakers into account in the 
development of CALL-based pronunciation teaching and 
assessment. Findings in second language acquisition research 
suggest a strong theoretical basis for this ([e.g. [1], [20], [21].  

5. Conclusions 
We have presented the results of a study examining the utility 
of spectral features of vowels in the automated assessment of 
non-native English speech. Previous studies ([9], [10]) have 
used vowel space size (or vowel dispersion) as a measure of 
accuracy in L2 pronunciation. However, the theoretical basis 
for this assumption remains unclear. There is also difficulty in 
normalising speaker variation, and in the use of formant 
analysis in automated assessment. This study examined the use 
of vowel spectral features as a robust alternative to formant 
analysis. 

The results of the study suggest a link between DCT 
coefficients (DCT-1 and DCT2 being analogous to F1 and F2 
formant measures, respectively) and the pronunciation 
proficiency of speakers. An approach such as this that links 
features to concrete linguistic phenomena would make 
assessment more explicit and provide a direct path to second 
language teaching within, for example, a CALL medium. We 
further show that assessment of L2 pronunciation may be 
enriched by an approach that takes the native language 
phonology of speakers into account. This would inevitably 
mean that future studies such as this one would need to 
compare speakers of various other native language 
backgrounds.   
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