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Abstract
In this paper, we present a new i-vector based speaker adap-

tation method for automatic speech recognition with deep neu-
ral networks, focusing on in-vehicle scenarios. Our proposed
method is, rather than augmenting i-vectors to acoustic feature
vectors to form concatenated input vectors for adapting neu-
ral network acoustic model parameters, is to perform feature-
space transformation with smaller transformation neural net-
works dedicated to acoustic feature vectors and i-vectors, re-
spectively, followed by a layer of linear combination of the
network outputs. This feature-space transformation is learned
via semi-supervised learning without any parameter change in
the original deep neural network acoustic model. Experimen-
tal results show that our proposed method achieves 18.3% rel-
ative improvement in terms of word error rate compared to the
speaker independent performance, and verify that it has a po-
tential to replace well-known feature-space Maximum Likeli-
hood Linear Regression (fMLLR) in in-vehicle speech recogni-
tion with deep neural networks.
Index Terms: Speaker adaptation, deep neural network, i-
vector, linear combination layer, semi-supervised learning

1. Introduction
Deep Neural Networks (DNNs) have taken over the dominance
of Gaussian Mixture Models (GMMs) in a Hidden Markov
Model (HMM) framework for Automatic Speech Recognition
(ASR), since deep learning based neural networks showed sig-
nificant improvements in modeling context-dependent phonetic
events [1]. More recently, there are research activities to re-
place even the HMM framework with recurrent neural net-
works, moving towards an end-to-end neural network system
pipeline for ASR [2, 3, 4]. This paradigm shift is not only
due to continuing development in the research field of neural
networks, e.g., overcoming vanishing gradient problems during
multi-layer network training [5, 6, 7], but thanks to the recent
advent of powerful parallel computing architectures that can ef-
ficiently handle vast amount of data to train large size DNNs.

Speaker adaptation is critical to achieve consistent ASR
performance across different speakers. The acoustic feature
vectors captured from spoken utterances, e.g., Mel-Frequency
Cepstral Coefficient (MFCC), contain not only phonetic con-
tents but also idiosyncratic attributes, such as speaker-specific
traits caused by gender, dialect or nativeness. In general, acous-
tic models for ASR are delicate to such speaker-dependent vari-
ations. For this reason, there have been a significant number of
research efforts on speaker adaptation that minimizes the influ-
ence of speaker-dependent variations on ASR performance.

In DNN-HMM based ASR systems, i-vectors [8] have

gained popularity for speaker adaptation. They are a sub-space
representation for Gaussian Super Vectors (GSVs) [9], and are
extracted by a simplified joint factor analysis that projects GSVs
to a total variability sub-space. In a DNN-HMM based ASR
framework, i-vectors are augmented to acoustic feature vectors
to form concatenated input vectors for a DNN [10, 11]. Due
to i-vectors’ speaker-specific information, the parameters of the
DNN acoustic model are adapted to be insensitive to speaker-
dependent variations.

In this paper, we propose a new i-vector based speaker
adaptation method for a DNN-HMM based ASR system, focus-
ing on in-vehicle ASR. There are two practical restrictions that
we considered for our proposal; 1) the DNN acoustic model of
an in-vehicle ASR system is not directly updated or entirely re-
trained through the speaker adaptation procedure, and 2) the
in-vehicle ASR system should work in a hybrid fashion, re-
gardless of whether i-vectors are available for vehicle drivers1.
The proposed method, rather than adapting the DNN parame-
ters, is to transform input feature vectors for the DNN acoustic
model to a new feature space where speaker-dependent varia-
tions are normalized, like feature-space Maximum Likelihood
Linear Regression (fMLLR) [12] does for GMM-based acous-
tic models as compared to normal MLLR for adapting GMM
means and variances. This feature-space transformation is per-
formed through two smaller transformation neural networks for
acoustic feature vectors and i-vectors, respectively, followed by
a layer of linear combination of the network outputs prior to
the DNN acoustic model. The transformed feature vectors af-
ter the linear combination layer have the same dimension of the
original feature vectors, suitable for the DNN acoustic model
to work in a hybrid fashion. Conventional i-vector augmen-
tation for speaker adaptation in DNN-HMM based ASR, e.g.,
[10, 11], assumes the availability of i-vectors, and in a case
where i-vector is unavailable for a certain driver (or speaker) it
would not be working. All the parameters of the transformation
neural networks as well as the linear combination weights are
trained via semi-supervised learning [13] where the first-path
decoding hypotheses of adaptation data are used as references
to compute error signals for back-propagation. The error sig-
nals do not affect the parameters of the DNN acoustic model
but just by-pass them, only updating the parameters relating to
feature-space transformation.

1One might argue that i-vectors are always available since they can
be generated on the fly per frame for given acoustic feature vectors, but
such frame-level i-vectors are limited in terms of representing speaker-
specific information. In this paper, i-vector implies a voice profile be-
ing extracted from a collection of spoken data for a given speaker. In
practice, enough data to generate reliable i-vectors is not guaranteed for
some speakers.
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Figure 1: Proposed system architecture for transformation neu-
ral network based speaker adaptation (inside the dotted box) in a
DNN-HMM ASR framework. The parameters of the two trans-
formation neural networks (bottom left and right) as well as α
and β are trained via semi-supervised learning while the param-
eters of the DNN acoustic model are not updated during back
propagation.

This paper is organized as follows. In Section 2, we de-
scribe our proposed speaker adaptation method in more de-
tail. The data set used for system evaluation, which is Ford
Motor Company’s proprietary corpus of noisy voice com-
mands/utterances recorded in Ford-branded vehicles in various
ambient noise scenarios, is presented in Section 3, along with
experimental results and discussions. We summarize our find-
ings and present future directions in Section 4.

2. Feature-Space Transformation for
Speaker Adaptation

Figure 1 shows an illustrative system architecture for our pro-
posed feature-space transformation method (inside the dotted
box, in particular) using two transformation neural networks
prior to the original DNN acoustic model. The transformation
neural networks are relatively smaller networks as compared
to the DNN acoustic model, with the purpose of transforming
acoustic feature vectors and i-vectors to a new feature space
where speaker-dependent variations are normalized. This ap-
proach is analogous to constrained MLLR or fMLLR [12] in
a GMM-HMM based ASR framework. Consider x̄ is a per-
frame acoustic feature vector. fMLLR finds an affine transform
to project x̄ onto a new feature space,

x̄GMM
a = Ax̄ + b̄ (1)

where A and b̄ are optimized with the following loss function
L:

logL(x̄|µ̄,Σ,A, b̄) = logN (Ax̄ + b̄; µ̄,Σ)) +
1

2
log |A|2.

(2)

Figure 2: Detailed illustration of a layer of linear combination in
the proposed system architecture. Wα and Wβ are the weight
matrices having α and β for Wα,ii and Wβ,ii, respectively, and
0 for Wα,ij and Wβ,ij , where i 6= j.

Here, µ̄ and Σ are the mean vector and the covariance matrix
of one Gaussian distribution N of the GMM acoustic model.
The proposed method replaces fMLLR’s affine transform. Note
that we consider in-vehicle ASR with DNNs, where fMLLR is
not available in practice. In in-vehicle ASR scenarios, the DNN
acoustic model of an ASR engine built in a car has no ability
to support fMLLR, which require GMMs instead. Given that
we focus on a DNN-HMM based ASR framework, it would be
natural to think of alternatives to fMLLR. Our practical solu-
tion is to do function approximation using two transformation
neural networks rather than finding a linear transform. Let’s
consider transformation neural networks with N layers with an
activation function σn for each layer n. The transformed feature
vectors using acoustic feature vectors x̄ and i-vectors ī from the
proposed method would be

x̄DNN
a = α · σN (Wl

N ālN−1 + b̄lN ) +

β · σN (Wr
N ārN−1 + b̄rN ) (3)

where l and r mean the parameters belonging to the transfor-
mation neural network for acoustic feature vectors (left) or i-
vectors (right) in Fig. 1, respectively. WN is the weight matrix
in the N th-layer while bN is the bias vector. In addition,

ān = σn(Wnān−1 + b̄n) (4)

where āl1 = σ1(Wl
1x̄ + b̄l1) and ār1 = σ1(Wr

1 ī + b̄r1). α
and β as well as the other neural network parameters (W and
b̄) are trained with the objective function of cross entropy via
semi-supervised learning [13], where the first-path decoding
hypotheses of adaptation data are used as references to com-
pute error signals for back-propagation. Thanks to this semi-
supervised training strategy, our proposed system does not re-
quire manual transcriptions for adaptation data, which is an-
other practical advantage for in-vehicle ASR.

In in-vehicle ASR scenarios, it is not feasible to update the
parameters in the DNN acoustic model of a built-in ASR engine
in a car. The error signal vector (or error terms) d̄M generated
by cross entropy criterion at the output layer of the DNN acous-
tic model is hence just by-passed down to the linear combina-
tion layer, where α and β are updated as follows:

α := α− λ( 1
k

∆α) = α− λ( 1
k

∆Wα,11) (5)

β := β − λ( 1
k

∆β) = β − λ( 1
k

∆Wβ,11). (6)

λ is a learning rate while k is a mini-batch size, and ∆Wα,ij

and ∆Wβ,ij are the elements at the ith row and the j th column of
∆Wα and ∆Wβ , respectively. To compute ∆Wα and ∆Wβ ,
let us first refer to Figure 2, which shows a detailed illustration
of the linear combination layer in terms of Wα and Wβ , where

Wα,ij (or Wβ,ij) =

{
α (or β ), i = j

0, i 6= j
. (7)

3844



Using Wα and Wβ , Eq. (3) is re-written as

x̄DNN
a = x̄AM = Wα · σN (Wl

N ālN−1 + b̄lN ) +

Wβ · σN (Wr
N ārN−1 + b̄rN ) (8)

= Wα · σN (z̄lN ) + Wβ · σN (z̄rN ) (9)

where x̄AM is the input to the DNN Acoustic Model (AM). As
a result, we can write

āAM
m = σAM

n (WAM
m āAM

m−1 + b̄AM
m ) = σAM

n (z̄AM
m ) (10)

where the DNN acoustic model has M layers and āAM
1 =

σAM
1 (WAM

1 x̄AM + b̄AM
1 ). In a back-propagation mode, the error

signal vector d̄M at the output layer of the DNN acoustic model
is propagated as follows

d̄m = ((WAM
m )T d̄m+1) • ∂

∂z̄AM
m

āAM
m , (11)

where • is an element-wise dot product, coming down to d̄1,
error signal vector at the linear combination layer. Thus,

∆Wα = d̄1 · (ālN−1)T . (12)

Similarly,
∆Wβ = d̄1 · (ārN−1)T . (13)

The parameters of the transformation neural networks are also
computed in a similar way as error signal vectors keep being
propagated down through the two networks.

One interesting aspect of the proposed method is a lin-
ear combination of the outputs of the two transformation neu-
ral networks to keep the dimension of the transformed vec-
tors unchanged for the DNN acoustic model. In other words,
|x̄DNN
a | = |x̄| where | · | is the cardinality of a vector. This

is to accommodate the practical need that in-vehicle ASR with
i-vector based speaker adaptation should work in a hybrid fash-
ion, regardless of whether i-vectors are available or not for
drivers (or speakers). The similar approaches to utilize a lin-
ear combination for network outputs prior to another DNN can
be found in [14, 15], which however are not applicable to in-
vehicle ASR scenarios.

3. Experiments and Discussions
3.1. Data

The main data set we used in our experiments is Ford Motor
Company’s noisy data corpus (2K vocabulary and 20 hours in
total) collected in actual driving conditions in Ford-branded ve-
hicles. The utterances were recorded in reverberate and noisy
vehicle cabins of varying body styles2 and different ambient
noise conditions3. We partitioned this data set into two sets with
non-overlapping speakers. The training set contains 15,610 ut-
terances from 82 speakers and the evaluation set contains 1,573
utterances from 8 speakers. We directly used each audio signal
without any special noise suppression techniques.

2They are categorized to small, medium, large car, SUV and pickup
truck.

3They are blower on/off, road surface, rough/smooth, 0-65 MPH
speed, windshield wipers on/off, windows open/closed, etc.

Table 1: Baseline system performances for both WSJ and Ford’s
noisy corpus in terms of WER (%). For the Ford corpus,
we trained the systems (GMM-HMM and Speaker Independent
DNN-HMM) only using the Ford training set.

Systems dev93 eval92 Ford
GMM-HMM 9.4 5.4 12.5

SI DNN-HMM N/A N/A 12.6

3.2. Baselines

The baseline GMM-HMM system was trained with Speaker
Adaptive Training (SAT) [16] using conventional 39-
dimensional MFCC vectors with 25ms Hamming windowing
and 10ms frame shift. The MFCC vectors are spliced over 9
frames and Linear Discriminant Analysis (LDA) is applied to
project the spliced vectors onto a 40-dimensional sub-space.
Then, Maximum Likelihood Linear Transform (MLLT) is
performed for better orthogonality in the represented features.
The trained GMM acoustic model contains 3,400 tied tri-phone
states and 20,000 Gaussians. The baseline Speaker Inde-
pendent (SI) DNN-HMM system accepts filterbank features
being spliced with 15 frames, resulting in 345 dimensions.
The DNN acoustic model consists of six hidden layers with
sigmoid activation functions, and one output layer with softmax
activation. Each hidden layer has 1,024 neurons. The number
of output units matches the number of tri-phone states in the
baseline GMM acoustic model. The DNN was initialized
with stacked Restricted Boltzmann Machines (RBMs) and
then fine-tuned using Stochastic Gradient Descent (SGD)
to minimize cross entropy. The baseline performances for
both Wall Street Journal (WSJ) and Ford’s noisy corpus are
shown in Table 1. For the WSJ experiments, we followed
the Kaldi recipe for training and testing while for the Ford
corpus we trained the baseline systems only using the Ford
training set. There is a clear discrepancy in Word Error Rate
(WER) between these two corpora since the Ford corpus is
noisy as compared to the clean WSJ. Note that the DNN-HMM
based ASR performance without any speaker adaptation is
comparable with the GMM-HMM baseline with SAT, which
verifies a great potential in DNN-HMM based ASR for noise
robustness.

3.3. Experimental Setup

The configuration of the proposed transformation neural net-
work architecture is as follows. It accepts 100-dimensional i-
vectors, which are drawn per speaker by projecting GSVs that
concatenate 2,048 MAP-adapted Gaussian mean vectors of 40
dimensions from a Universal Background Model (UBM) onto
a total variability sub-space. The UBM was also trained with
the Ford training set using the Expectation-Maximization (EM)
algorithm. The generated i-vectors were shared across adapta-
tion data from the same speakers. for the same speakers. We
used the adaptation data set held out from the Ford corpus of
around 1 hour in the total length, not being used in either train-
ing and testing. The two transformation neural networks have
the same configuration with 3 layers of 512 neurons each with a
sigmoid activation, whose output vectors are 345-dimensional,
consistent with the dimension of the original filterbank acous-
tic feature vectors. To train the parameters of the transformation
neural networks as well as the linear combination weights α and
β, we employed a semi-supervised learning strategy mentioned
in Section 2. We generated alignments between the tri-phone
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Table 2: Comparison of WER (%) with the proposed method
with different setups as well as the baseline SI DNN-HMM
system. x̄AM

a is the input vector for the DNN acoustic model
whereas x̄DNN

a is the transformed feature vector after the trans-
formation neural networks followed by the linear combination
layer in Eq. (3).

Systems WER
SI DNN-HMM 12.6

x̄AM
a = σN (Wl

N ālN−1 + b̄lN ) 12.6
x̄AM
a = x̄DNN

a in Eq. (3) 10.4
x̄AM
a = x̄DNN

a + γx̄ 10.2

states of the SI DNN-HMM system and the first-path decod-
ing hypotheses of adaptation utterances for the purpose of cross
entropy training. Then, we employed the back-propagation of
log likelihood error signals from the output layer of the DNN
acoustic model while freezing its parameters.

3.4. Results and Discussions

In Table 2, we compare the WERs of the proposed method with
different cases as well as the baseline SI DNN-HMM system.
In the first case, where x̄AM

a = σN (Wl
N ālN−1 + b̄lN ), only the

transformation neural network accepting acoustic feature vec-
tors is enabled while the other neural network for i-vectors is
disabled. This case represents a scenario where i-vectors are
not available. Even such a case, we can observe the ASR sys-
tem with the proposed architecture works reasonably, providing
the same WER with the baseline SI DNN-HMM system. This
is the perfect example of our proposed method enabling DNN-
HMM based ASR with speaker adaptation to function in a hy-
brid fashion. In the second case (4th row in the table), where
x̄AM
a = x̄DNN

a , both of the transformation neural networks are
enabled, as shown in Eq. (3). This is the ideal case where the
proposed method for speaker adaptation is fully functional. The
relative performance improvement as compared to the SI base-
line is 18.3%, showing a statistically meaningful enhancement
by speaker adaptation from 12.6% to 10.4% in WER. In the
last case, we consider the extra input for the linear combina-
tion layer in addition to the outputs of the two transformation
neural networks, i.e., original acoustic feature vector x̄. Like
α and β, the linear combination weight γ is updated through
back-propagation as follows:

γ := γ − λ(
1

k
∆γ) = γ − λ(

1

k
∆Wγ,11) (14)

and
∆Wγ = d̄1 · x̄T . (15)

The reasoning behind consideration of this case in our exper-
iments is to see if acoustic features themselves without any
transformation would have impact on speaker adaptation. Even
though there is a slight improvement in WER as compared to
the previous case (10.4% vs. 10.2%), it is hard to tell adding
x̄ in the linear combination layer helps speaker adaptation.
Rather it implies i-vectors are more important to normalize
speaker-dependent variations, aligned with what is reported in
[10, 11, 14, 15].

4. Conclusions
We have presented a new i-vector based speaker adaptation
method for a DNN-HMM based ASR framework, focusing on

in-vehicle ASR scenarios. Considering two practical restric-
tions in in-vehicle ASR systems with DNNs, we proposed a
feature-space transform using two transformation neural net-
works for acoustic feature vectors and i-vectors, followed by
a layer of linear combination. The parameters of the networks
as well as the linear combination weights were trained via a
semi-supervised learning strategy, while the parameters of the
DNN acoustic model were not updated. In this way, we were
able to separate the original SI DNN acoustic model from the
speaker adaptation procedure, which is more practical for in-
vehicle ASR systems than updating the entire DNN acoustic
model parameters with a (relatively) smaller size of adaptation
data.

The relative improvement in WER of 18.3% shows the pro-
posed method has a potential to become an alternative feature-
space transform to fMLLR for speaker adaptation purposes in
DNN-HMM based ASR. Still, fMLLR is powerful at normal-
izing speaker-specific variations but in situations like in-vehicle
ASR with DNNs where GMMs are not available, our proposed
system architecture seems promising. In addition, a hybrid
way of performing speaker adaptation in the proposed system
depending upon the availability of i-vectors could be easily
adopted in various voice interface applications where speaker
adaptation is critical but i-vectors are not always ready. We plan
to extend this work towards more practical use cases of using
a much smaller size of adaptation data to normalize speaker-
dependent variations in in-vehicle ASR.
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