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Abstract 
Mispronunciation detection is part and parcel of a computer 
assisted pronunciation training (CAPT) system, facilitating 
second-language (L2) learners to pinpoint erroneous 
pronunciations in a given utterance so as to improve their 
spoken proficiency. This paper presents a continuation of such 
a general line of research and the major contributions are two-
fold. First, we present an effective training approach that 
estimates the deep neural network based acoustic models 
involved in the mispronunciation detection process by 
optimizing an objective directly linked to the ultimate 
evaluation metric. Second, along the same vein, two disparate 
logistic sigmoid based decision functions with either phone- or 
senone-dependent parameterization are also inferred and used 
for enhanced mispronunciation detection. A series of 
experiments on a Mandarin mispronunciation detection task 
seem to show the performance merits of the proposed method.  
 Index Terms: computer assisted pronunciation training, 
mispronunciation detection, discriminative training, deep 
neural networks  

 
1. Introduction 

The recent significant progress being made in the field of 
automatic speech recognition (ASR) has led to its growing 
applications in computer assisted pronunciation learning 
(CAPT). Paramount to the success of a CAPT system is the 
accuracy of the mispronunciation detection module, which 
manages to pinpoint erroneous pronunciations in the utterance 
of a second-language (L2) learner in response to a text prompt.  

A common practice for mispronunciation detection is to 
extract decision features (attributes) [1] from the prediction 
output of acoustic models which normally are estimated based 
on certain criteria that maximize the ASR performance. 
Although hidden Markov models with Gaussian mixture 
models accounting for state (or senone) emission probabilities 
(denoted by GMM-HMM) used to be the predominating 
approach for building the acoustic models involved in the 
mispronunciation detection process, a recent school of thought 
is to leverage various state-of-the-art deep neural network 
(DNN) architectures in place of GMM for modeling the state 
emission probabilities in HMM (denoted by DNN-HMM) [2-
4], which shows excellent promise for improving empirical 
performance [5-7]. As for decision feature extraction, log-
likelihood, log-posterior probability and segment duration-
based scores, among others [8], are frequently used in 
evaluating phone- [9] or word-level [10] pronunciation quality, 
while log-posterior probability based scores and its prominent 
extension, namely goodness of pronunciation (GOP) [11, 12], 

are the most prevalent and have been shown to correlate well 
with human assessments. Yet there still are a wide array of 
studies that capitalize on various acoustic and prosodic cues, 
confidence measures and speaking-style information, to name 
just a few, for use in mispronunciation detection. Interested 
readers may also refer to [13-17] for comprehensive and 
enjoyable overviews of state-of-the-art methods that have been 
successfully developed and applied to various 
mispronunciation detection tasks.  

Our work in this paper continues this general line of 
research and has at least the following two major contributions: 
First, we present an effective learning approach that estimates 
the deep neural network based acoustic models involved in the 
GOP-based mispronunciation detection process by optimizing 
an objective directly linked to the ultimate evaluation metric 
of mispronunciation detection. Second, along the same vein, 
two disparate logistic sigmoid based decision functions with 
either phone- or senone-dependent parameterization are also 
estimated and employed for mispronunciation detection. 

2. GOP-based Mispronunciation Detection 
The general task of mispronunciation detection is to determine 
whether there exist mispronounced phone segments in the 
utterance of an L2 learner with regard the canonical phone-
level pronunciations indicated by a text prompt. Given an 
utterance � composed of �� phone segments, the GOP score 
for a phone segment ��,� , aligned to a canonical (actual) 
phone label ��,�, can be defined as follows by assuming all 
phones share the same prior probability [11, 12, 18] : 
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where ��,�  is the duration of ��,� , 	�,�  represents the set of 
acoustic models for all possible phone labels corresponding to 
��,�. Alternatively, we may use the maximum operation [6, 
11] to approximate the summarization operation in Eq. (1) for 
the sake of computational simplicity, which leads to the 
following formula: 
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The probabilities )|( ,, nunu qP O  and )~|( , qP nuO involved in 
Eqs. (1) and (2) can be calculated with either the GMM-HMM 
or the DNN-HMM based acoustic models, whereas the latter 
has demonstrated superior performance over the former in a 
wide range of ASR and mispronunciation detection tasks [2, 3, 
5, 7]. 

The GOP-based score for an arbitrary phone segment 
��,� , in turn, is taken as a decision feature and fed into a 
decision function, such as the logistic sigmoid function: 
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where 	 and �  are tunable parameters controling the shape 
of the decision function; the higher the value of the output, the 
more likely that the phone segment is mispronounced. As such, 
we can use the output score of the decision function in relation 
to a pre-established threshold to determine whether the phone 
segment is correctly pronounced or mispronounced. 

Further, in an attempt to obtain a finer-grained inspection 
of the pronunciation quality of a phone segment ��,�, we can 
align ��,�  into a sequence of senone segments ��,�,
  in 
accordance with its canonical phone label ��,� , where each 
senone segment may consist of one to several consecutive 
speech frames that belong to the same senone identity. By 
doing so, we can calculate the GOP score ),,GOP( inu and 
subsequently the senone-level decision score ),,(D~ inu  for 
each senone segment ��,�,
  involved in ��,�, using formulas 
defined similarly to Eqs. (1)-(3). Afterwards, an ensemble of 
the output scores of all senone-level decision functions for 
��,� can be taken as a more elaborate measure to determine 
whether ��,� is mispronounced or not:  
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where is S�,�  the total number of senone segments 
corresponding to ��,�. 

3. Maximum F1-Score Criterion Training 
In the conventional setting for GOP-based mispronunciation 
detection, the underlying acoustic models are normally trained 
with criteria that maximize the ASR performance, such as 
maximum likelihood (ML) estimation, minimum cross-
entropy (MC) estimation and the state-level minimum Bayes 
risk (sMBR) estimation [3, 19-21] , to name just a few, while 
the parameters of the decision function are often determined 
empirically. In this paper, we explore to learn the DNN-HMM 
based acoustic models, as well as the decision function, with a 
discriminative objective that is directly linked to the ultimate 
evaluation metric of mispronunciation detection. Here we take 
the F1-score for investigation, since it was frequently adopted 
as the evaluation metric in previous work on mispronunciation 
detection [22-24]. Further, in this paper, the parameters of the 
decision function is set to be either phone- or senone-
dependent when the phone-level (cf. Eq. (3)) or finer-grained 

senone-level decision functions (cf. Eq. (4)), respectively, are 
used for mispronunciation detection. 

In the context of mispronunciation detection, the training 
objective for the maximum F1-score criterion (MFC) can be 
defined as follows:   
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where � denotes the set of parameters pertaining to both the 
DNN-HMM based acoustic models and the decision functions, 
�  is the total number of training utterances, ��  is the total 
number of phone segments in an utterance �, C
 is the total 
number of phone segments in the training set that were 
identified as being mispronounced by the current 
mispronunciation detection module, C� is the total number of 
phone segments in training set that were identified as being 
mispronounced by the majority vote of human assessors, C
∩� 
is the total number of phone segments in the training set that 
are identified as being mispronounced simultaneously by both 
the current mispronunciation detection module and the 
majority vote of human assessors, and the indicator function 
I(D(�, �)) can be further expressed by 
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where � a pre-specified threshold. As a matter of convenience, 
the training objective defined in Eq. (5) can be further 
approximated by   
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The training objective depicted in Eq. (7) can be viewed as a 
soft version of the training objective defined in Eq. (5), which 
in turn can be optimized using a stochastic gradient ascent 
algorithm, in conjunction with the chain rule for 
differentiation, to iteratively update the parameter set of both 
the DNN-HMM acoustic models and the decision function. 
Below we briefly highlight the procedure for maximum F1-
score criterion training: 

1) Train the DNN-HMM based acoustic models on the 
native-speaker (denoted by L1) portion of training data 
with the minimum cross-entropy (MC) estimation. 

2) On top of the DNN-HMM based acoustic models 
estimated from Step 1, try to compute the decision 
scores of all phone segments of the training utterances 
(some of them contain mispronunciations) that belong 
to the L2 learners, where the decision function can be 
instantiated with either Eq. (3) or Eq. (4) and the 
parameters of the decision functions are empirically 
determined and set to be identical for all phones or 
senones. 

3) Use the training objective introduced in Eq. (7) to 
iteratively update the parameters of the DNN-HMM 

2647



based acoustic models and the parameters of the phone- 
(Eq. 3) or senone-level (Eq. 4) decision function, with 
the stochastic gradient ascent algorithm and the chain 
rule for differentiation. Note that the estimated 
parameters of the decision function can be either phone 
(or sensone)-independent or phone (or senone)-
dependent.  

The notion of leveraging evaluation metric-related 
training criteria for training the GMM-HMM based acoustic 
models has recently attracted much attention in the CAPT 
research with some success [15, 17, 24, 25]. However, as far 
as we are aware, this notion has never been extensively 
explored for jointly training the DMM-HMM based acoustic 
models and decision functions.  

4.  Experimental Setup 

4.1. Corpus and Acoustic Modeling 
The dataset employed in this study is a Mandarin annotated 
spoken (MAS) corpus compiled by the Center of Learning 
Technology for Chinese, National Taiwan Normal University, 
between 2012 and 2014 [26]. The corpus was split into three 
subsets: training set, development set and test set. All these 
subsets are composed of speech utterances (containing one to 
several syllables) pronounced by native speakers (L1) and L2 
learners. Each utterance of an L2 learner may contain 
mispronunciations, which were carefully annotated by at most 
four human assessors with a majority vote. Table 1 briefly 
highlights the statistics of the speech corpus.  

The ASR system was built on top of the Kaldi toolkit 
[27]. Each GMM-HMM based acoustic model consists of 3 
states, where each state has at least 16 Gaussian mixtures. On 
the other hand, different structures for building the DNN-
HMM based acoustic models are investigated in this paper, as 
shown in Table 2. For the DNN-HMM based acoustic models, 
the activation function of the hidden layers in the DNN 
module is the sigmoid function, and the activation function of 
the output layer is the softmax function. The ASR (free-
syllable decoding without language model constraints) results 
on the test set (only the L1-speraker portion), using either 
GMM-HMM or DNN-HMM, are shown in Table 3 in terms of 
syllable error rate (SER) and phone error rate (PER). Since 
DNN(B)-HMM (w/o sMBR training) achieves the best 
performance and is far better than GMM-HMM, in the 
following experiments, the acoustic models are built on top of 
DNN(B)-HMM, unless otherwise stated. 

4.2. Performance Evaluation 
The default evaluation metric employed in this paper is the 
F1-score, which is a harmonic mean of precision and recall, 
defined as 
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where C
, C� and C
∩� were previously introduced in Section 
3, but are instead counted on the test set for performance 
evaluation here.  

Table 4: Mispronunciation detection results achieved by 
using either the phone- or senone-level decision function 

and with or without the MFC training criterion. The 
acoustic models are DNN(B)-HMM. 

Recall Precision F1 Score 
Phone-level 0.681 0.537 0.600 
Senone-level 0.675 0.545 0.603 
+MFC (Both) 0.696 0.626 0.659 
+MFC (AM) 0.697 0.621 0.657 
+MFC (DF) 0.688 0.581 0.630 

 
 

Table 5: Mispronunciation detection results achieved by 
using either the phone- or senone-level decision function 

and with or without the MFC training criterion. The 
acoustic models are DNN(B)-HMM+sMBR. 

Recall Precision F1 Score 
Phone-level 0.671  0.551  0.605  
Senone-level 0.652  0.555  0.599  
+MFC (Both) 0.743  0.587  0.656  
+MFC (AM) 0.738  0.586  0.653  
+MFC (DF) 0.698  0.570  0.627  

 

Table 1: The statistical information of the speech corpus used 
in the mispronunciation detection experiments.  

 
Duration 
(hours) # Speakers # Phone 

Tokens # Errors 

Training 
Set 

L1 6.68 44 73,074 NA 
L2 15.79 63 118,754 26,434 

Development 
Set 

L1 1.40 10 14,216 NA 
L2 1.46 6 11,214 2,699 

Test 
Set 

L1 3.20 26 32,568 NA 
L2 7.49 44 55,190 14,247 

 
 

Table 2: Different structures of the DNN module in DNN-
HMM.  
# Layers  # Neurons per Layer 

DNN(A)-HMM 4 1,024 
DNN(B)-HMM 4 2,048 
DNN(C)-HMM 6 1,024 

 
 

Table 3: ASR Experimental Results.  
Syllable Error 

Rate (%) 
Phone Error 

Rate (%) 
GMM-HMM 50.9 34.3 

DNN(A)-HMM 41.2 27.7 
DNN(B)-HMM 40.1 27.0 
DNN(C)-HMM 40.7 27.2 

DNN(B)-HMM+sMBR 37.9 24.9 
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5. Experimental Result 
At the outset, we report on the results obtained by using either 
the phone-level decision functions (cf. Eq. (3)) or the senone-
level decision functions (cf. Eq. (4) for mispronunciation 
detection. The acoustic models used here are DNN(B)-HMM 
trained with the minimum cross-entropy (MC) estimation, 
while the parameters of the decision functions are empirically 
tuned at optimum values based on the development set. As can 
be seen from the first two rows of Table 4, mispronunciation 
detection with the proposed senone-level decision function 
offers slight improvement over that using the phone-level 
decision function in terms of the F1-score. In particular, the 
precision value is increased by about 1.5% relative; this gain 
comes at the expense of a relatively lower recall value.  

In the second set of experiments, we evaluate the utility 
of leveraging the MFC training criterion for estimating the 
parameters of the acoustic models (MFC(AM)), the decision 
function (MFC(DF)), or both of them (MFC(Both)), taking the 
senone-level decision functions for illustration. Notice here 
that the acoustic models are pre-trained with the MC 
estimation. The corresponding results are shown in the last 
three rows of Table 4, where two noteworthy observations can 
be drawn. First, all the three MFC training settings can 

significantly boost the mispronunciation detection 
performance with respect to the F1-score, as well as the recall 
and precision values. Especially, the F1-score is increased by 
about 10% relative when using the MFC(Both) training setting, 
indicating the effectiveness of using the MFC-based 
discriminative training for the mispronunciation detection task.  
Second, using MFC to train the acoustic models alone 
(MFC(AM)) seems to deliver much more performance gains 
than using MFC to estimate the decision functions alone 
(MFC(DF)), corroborating the crucial role of acoustic 
modeling in mispronunciation detection.  

In addition, we also investigate the performance levels of 
using the acoustic models estimated with the conventional 
discriminative training criterion for ASR (i.e. sMBR; denoted 
by DNN(B)-HMM+sMBR), as well as its combination with 
the MFC training criterion. The corresponding results are 
depicted in Table 5. Comparing the result shown in Tables 4 
and 5, we can see that even though sMBR can considerably 
improve the ASR performance in terms of SER and PER (cf. 
Table 3), it does not provide any additional gain for 
mispronunciation detection that employs either the MC-
estimated acoustic models or the acoustic models further 
trained with the MFC criterion. The performance trends 
exhibited in Table 5 are quite in parallel with those shown in 
Table 4.  

Finally, Figures 1 and 2, respectively, depict the recall-
precision curves and the Receiver Operating Characteristic 
(ROC) curves for the aforementioned different training 
settings (all with the senone-level decision functions) 
illustrated in Table 4. Visual inspections of these two figures, 
again, confirm the obvious advantage of MFC. We also have 
observed similar trends when using some other popular 
metrics for performance evaluation; however, due to the space 
limit, we omit the details here. 

6. Conclusions 
In this paper, we have explored an effective maximum 
performance training approach for estimating the deep neural 
network based acoustic models, as well as the logistic sigmoid 
based decision functions, involved in the GOP-based 
mispronunciation detection process. This approach optimizes 
an objective that is closely related to the ultimate evaluation 
metric of mispronunciation detection. Furthermore, both 
phone- and senone-level decision functions with either phone 
(or sensone) dependent or independent parameterization were 
also investigated. Experimental evidence indeed supports the 
effectiveness of the proposed method. As to future work, we 
plan to investigate integrating more acoustic and prosodic 
features, as well as other different kinds of speaking-style 
information cues, into the process of mispronunciation 
detection. We also plan to develop different evaluation metric-
related training criteria, in conjunction with more sophisticated 
DNN-HMM structures and decision functions, for use in 
mispronunciation detection. 
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Figure 1: Recall-precision curves for different training 

settings shown in Table 4 (with the senone-level decision 
functions). 

 

 
Figure 2: ROC curves for different training settings 

shown in Table 4 (with the senone-level decision 
functions). 
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