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Abstract
Spectrograms of speech and audio signals are time-frequency
densities, and by construction, they are non-negative and do
not have phase associated with them. Under certain conditions
on the amount of overlap between consecutive frames and fre-
quency sampling, it is possible to reconstruct the signal from
the spectrogram. Deviating from this requirement, we develop
a new technique to incorporate the phase of the signal in the
spectrogram by satisfying what we call as the delta dominance
condition, which in general is different from the well known
minimum-phase condition. In fact, there are signals that are
delta dominant but not minimum-phase and vice versa. The
delta dominance condition can be satisfied in multiple ways, for
example by placing a Kronecker impulse of the right amplitude
or by choosing a suitable window function. A direct conse-
quence of this novel way of constructing the spectrograms is
that the phase of the signal is directly encoded or embedded
in the spectrogram. We also develop a reconstruction method-
ology that takes such phase-encoded spectrograms and obtains
the signal using the discrete Fourier transform (DFT). It is en-
visaged that the new class of phase-encoded spectrogram repre-
sentations would find applications in various speech processing
tasks such as analysis, synthesis, enhancement, and recognition.

Index Terms: magnitude spectrum, speech reconstruction, cep-
strum, causal delta-dominant signal, minimum-phase signal.

1. Introduction
The Fourier spectrum of a discrete-time sequence is complex-
valued in general and carries information both in magnitude and
phase functions. In general, given a discrete-time sequence it is
not possible to reconstruct it either from the magnitude spec-
trum or phase spectrum alone. However, sequences that can
be modelled as outputs of rational transfer functions with poles
and zeros inside the unit circle, are accurately specified by ei-
ther magnitude spectrum or the phase spectrum. Such systems
are said to be minimum-phase and they are associated with the
minimum group delay out of all systems that have a specified
magnitude spectrum. Therefore, for minimum-phase signals,
either magnitude or phase spectrum become redundant.

In the case of speech signals, the minimum-phase prop-
erty is seldom applicable. Even for voiced sounds, which are
modelled as outputs of a stable autoregressive/all-pole trans-
fer function in the context of linear prediction, the minimum-
phase property is only an approximation. Therefore, in gen-
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eral, speech signals cannot be reconstructed from magnitude or
phase components of their Fourier spectrum alone. At best, one
can only recover the minimum-phase component of a speech
signal if one were to reconstruct the signal purely from the mag-
nitude spectrum specification.

1.1. Prior art

The problem of reconstructing signals from their magnitude
spectra has received considerable attention in the past, partic-
ularly during the 1980s and goes by the name of Phase Re-
trieval. It has its roots in optical imaging research, where the
goal is to reconstruct a complex-valued object starting from
non-negative intensity measurements. The initial contributions
were made by Gerchberg and Saxton [1], and Fienup [2–4],
who proposed iterative phase retrieval algorithms, which can be
considered as special cases of alternating projection algorithms,
from a convex optimization perspective [5, 6]. In the signal
processing community, the initial contributions were made by
Oppenheim and co-workers in a series of papers [7–10]. The
most significant result in phase retrieval is the magnitude spec-
trum characterization of minimum-phase sequences and the as-
sociated Hilbert transform relation between the log-magnitude
and phase spectra [11]. Minimum-phase sequences are asso-
ciated with rational transfer functions whose poles and zeros
lie within the unit circle in the complex z-plane, inherently
having stability and invertibility guarantees. Hayes et al. [12]
solved the phase retrieval problem for real sequences whose Z-
transforms do not contain reciprocal pole-zero pairs, with poles
inside the unit circle and zeros outside the unit circle. Quatieri et
al. [13] proposed iterative techniques for signal reconstruction
from magnitude spectrum. The iterative algorithms are accu-
rate for minimum-phase signals. Yegnanarayana et al. [14] con-
sidered minimum-phase signals and showed that group-delay
functions play a significant role in recovering signals from their
magnitude Fourier spectra [15]. Alsteris and Paliwal presented
a review of various methods related to the short-time phase
spectrum in speech processing [16].

In the past decade, the problem of phase retrieval has been
vigorously pursued from a compressed sensing or sparsity per-
spective. Some notable contributions are the works of Moravec
et al. [17], who developed a compressive phase retrieval algo-
rithm, Ohlsson and Eldar [18], who developed sufficient condi-
tions on the measurement ensemble to guarantee unique recon-
struction for sparse signals, Netrapalli et al. [19], who presented
theoretical convergence guarantees, Shechtman et al. [20], who
proposed a greedy sparse phase retrieval algorithm, Eldar et
al. [21], who considered the reconstruction problem from the
short-time Fourier transform (STFT) magnitude, Lu and Vet-
terli [22], who solved a sparse spectral factorization problem as
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a solution to the phase retrieval problem, Candès et al. [23], who
developed the PhaseLift approach to solve the phase retrieval
problem using semi-definite programming, etc. This is merely
a representative list and by no means an exhaustive collection of
the works in the area of phase retrieval. In most of these papers,
applications related to image processing have been considered.

As far as our own contributions in this field are concerned,
we developed a sparse counterpart of the Fienup algorithm in
which only a k-sparse representation of the signal is computed
in each iteration [24, 25]. We also proposed a non-iterative
phase retrieval algorithm for minimum-phase signals based on
the annihilating filter that is frequently used in spectral estima-
tion [26]. An extension to a class of 2-D parametric signals was
reported in [27].

1.2. Our contribution

This paper is motivated by one of our recent publications [28],
in which we established some exact results for phase retrieval of
continuous-domain functions that lie in a shift-invariant space
spanned by a generator kernel and its integer-shifted versions.
The weights attached to the kernel and its shifted versions con-
stitute the discrete representation of the function in that space.
Contrary to the common understanding that continuous-time
functions that can be reconstructed from magnitude spectra
must be minimum-phase and hence causal, we showed that
exact reconstruction is possible even when the continuous-
time functions are not causal (although the corresponding se-
quences in the shift-invariant representation must be), but the
discrete-time sequence representations need not be minimum-
phase. We introduced a new class of sequences known as
causal, delta-dominant (CDD) sequences, which may or may
not be minimum-phase, but allow for signal reconstruction from
magnitude spectrum only. An interesting result that we proved
in [28] is that finite-length CDD sequences are minimum-phase!
Consequently, any finite-length sequence can be converted to a
minimum-phase sequence by making it CDD, which essentially
boils down to adding an impulse of the “right” magnitude at the
origin, without having to directly worry about the locations of
the zeros. Thus, one could encode the phase in the magnitude
spectrum and retrieve it during reconstruction. The key contri-
bution of this paper is the proof that phase encoding is possible.
By considering application to speech signals, we show how one
could construct phase-encoded spectrograms, from which it is
possible to reconstruct the signal exactly.

In Section 2, we present the key result of this paper. We
show that although any given segment of speech cannot be re-
constructed exactly from its magnitude spectrum, by slightly
modifying the signal, one can achieve exact reconstruction. The
modification is in terms of adding a Kronecker impulse of ap-
propriate strength at the origin, which allows the phase of the
signal to be encoded in the magnitude spectrum. The amplitude
of the impulse is specified depending on the values of the signal
within that frame. As it will be apparent from the proof, the cep-
strum plays a significant role in enabling signal reconstruction.
The reconstruction technique is nonlinear, noniterative, and ex-
act. In Section 3, we present some examples on synthesized as
well as real speech data to validate the theoretical findings.

2. The key result: Phase encoding is
possible

Consider a causal finite-length sequence x[n], 1 ≤ n ≤ N .
Such a sequence is obtained, for example, by windowing a

speech signal. The discrete-time Fourier transform (DTFT) of
x[n] is given by X(ejω) =

∑N
n=1 x[n] e

−jω n, which is a 2π-
periodic function in ω.

We construct a sequence x̃[n] = α δ[n] + x[n], which dif-
fers from x[n] only in the value at the origin (n=0). Without
loss of generality, let α be a positive real-valued constant. The
DTFT of x̃[n] is given as X̃(ejω) =

∑N
n=0 x̃[n] e

−jω n =

α + X(ejω), which differs from X(ejω) only by a con-
stant offset across all frequencies. The claim is that, if α >
|X(ejω)|, ∀ω ∈ [−π, π], then x̃[n] and therefore x[n] can be

exactly recovered from
∣∣∣X̃(ejω)

∣∣∣.
In order to prove the above claim, consider the logarithm of

the magnitude-squared spectrum:

log
∣∣∣X̃(ejω)

∣∣∣2 = log X̃(ejω) + log X̃∗(ejω)

= log
(
α+X(ejω)

)
+ log

(
α+X∗(ejω)

)
.

The first term on the right-hand side of the above equation is

log
(
α+X(ejω)

)
= log α+ log

(
1 +

1

α
X(ejω)

)
. (1)

Since α > |X(ejω)|, ∀ω ∈ [−π, π], we can invoke the Taylor-
series expansion:

log

(
1 +

1

α
X(ejω)

)
=

∞∑
m=1

(−1)m−1

m

Xm(ejω)

αm
. (2)

The expansion consists of higher-order powers of X(ejω). As
m increases, the contribution of the higher-order powers de-

creases because

∣∣∣∣ 1αX(ejω)

∣∣∣∣ < 1. Recall that x[n] and X(ejω)

form a DTFT pair. Therefore, the time-domain sequence corre-
sponding to X2(ejω) is (x ∗ x)[n], which is the convolution of

x[n] with itself: (x∗x)[n] DTFT←→ X2(ejω). Since x[n] is causal,
(x ∗ x)[n] is also causal. Extending this argument to higher
values of m, we note that Xm(ejω) is the DTFT of the m-fold

convolution of x[n]: (x ∗ x ∗ · · · ∗ x)︸ ︷︷ ︸
m times

[n]
DTFT←→ Xm(ejω). The

m-fold convolution of x[n] is also causal. Therefore, every term
in the expansion on the right-hand side of (2) is the DTFT of
a causal sequence. The expansion as a whole, which equals
log

(
1 + 1

α
X(ejω)

)
, is the DTFT of a causal sequence.

Now, consider the second term on the right-hand side of
(1): log

(
α+X∗(ejω)

)
. Since X∗(ejω) is the DTFT of x[−n],

which is anti-causal, all higher-powers of X∗n(ejω) also corre-
spond to the DTFT of anti-causal sequences. As a consequence,
it turns out that log

(
α+X∗(ejω)

)
is the DTFT of an anti-

causal sequence.

Thus, the inverse DTFT of log
∣∣∣X̃(ejω)

∣∣∣2, which is the

cepstrum, comprises two components: a causal sequence, and
an anti-causal sequence. If we retain only the causal part of
the cepstrum and compute the DTFT, then we get log X̃(ejω).

Thus, log X̃(ejω) can be recovered from log
∣∣∣X̃(ejω)

∣∣∣2 by a

combination of three operations: (i) inverse DTFT; (ii) selection
of causal part (which is easily done by multiplying with a unit-
step sequence); and (iii) DTFT of the causal sequence. Once
log X̃(ejω) is obtained, X̃(ejω) can be obtained by a complex
exponential operation. The sequence x̃[n] can be obtained by

computing the inverse DTFT of X̃(ejω). Since α is known, x[n]
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exp(·)

| · |2 log(·)x[n] x̃[n]

α

X̃
(
ejω

)
|X̃ (

ejω
) |2 log

(
|X̃ (

ejω
) |2

)

log
(
α+X

(
ejω

))

α+X
(
ejω

)

X
(
ejω

)

α δ[n]

+

Choose  
causal part

DTFT

IDTFT

DTFTIDTFTx[n] +

Phase encoder

Signal decoder

Figure 1: A block diagram of the proposed phase encoding
scheme and reconstruction scheme.
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Figure 2: Signal reconstruction from Fourier spectrum magni-
tude: (a) Ground truth, (b) Reconstructed signal, and (c) Re-
construction error. Note that the y-axis in (c) is three orders of
magnitude smaller than that in (a) and (b).

is readily computed from x̃[n]. Thus, x[n] can be recovered

from
∣∣∣X̃(ejω)

∣∣∣. The sequence of operations proposed to per-

form phase encoding and to perform signal decoding is shown
in Figure 1.

We next address the issue of choice of α. Since α has to be

chosen such that |X(ejω)| < α, and |X(ejω)| ≤
N∑

n=1

|x[n]|, a

reasonable choice for α is k

N∑
n=1

|x[n]|, where k � 1. Larger

the value of α, faster is the decay of the terms in the expansion
given in (2).

We have shown that by adding an impulse of appropri-
ate strength at the origin of a causal finite-length sequence, it
can be recovered only from the magnitude spectrum. The in-

verse DTFT of log
∣∣∣X̃(ejω)

∣∣∣ is the real cepstrum associated

with x̃[n], and the inverse DTFT of log X̃(ejω) is the com-
plex cepstrum of x̃[n]. Essentially, the signal is recovered from
the magnitude spectrum by making use of the properties of the
cepstrum. A similar cepstrum property was used by Drugman
et al. [29] to estimate the glottal flow by decomposing the com-
plex cepstrum of speech signal into causal and anti-causal com-
ponents. The glottal flow is estimated from the anti-causal com-
ponent of the complex cepstrum. In the proposed approach, we
showed that the the real cepstrum of a CDD signal x̃[n] can be
decomposed into causal and anti-causal parts, and that, it is pos-
sible to reconstruct the original signal x[n] using the causal part
of the real cepstrum of the CDD signal.
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Figure 3: Original and reconstructed speech signals and their
corresponding spectrograms. The spectrograms have been com-
puted using a Hann window of duration 20 ms. The reconstruc-
tion SNR is 37 dB.

2.1. Practical issues

In practice, we cannot compute the DTFT. We can only com-
pute the discrete Fourier transform (DFT), which is a sampled
version of the DTFT. The logarithm and exponential operations
described in the previous section in the context of computing
the cepstrum are nonlinear and hence aliasing problems may
occur. In order to suppress the aliasing error, the sequence must
be zero-padded before computing the DFT. Alternatively, if a
critically-sampled DFT spectrum magnitude is available to start
with, one may interpolate it before performing reconstruction.

3. Phase encoding of signals
3.1. Synthesized data

We present some simulation results to validate the theoretical
findings. We generated a signal g[n] = δ[n] + x[n], where

x[n] = e−0.8n/N sin(0.2n)+ e−0.75n/N sin(0.33n), 0 ≤ n ≤
511. The sequence x̃[n] is constructed as described in Section 2,

and the reconstruction technique is applied to |X̃(ejω)|2. The
signal x[n], the reconstructed signal x̂[n], and the reconstruc-
tion error x[n]−x̂[n] are shown in Figure 2. Although in theory,
exact reconstruction is guaranteed, in practice, the reconstruc-
tion error is nonzero due to the discrete approximation to the
Fourier transform. The error is small and acceptable for most
practical applications.

3.2. Phase-encoded speech spectrograms

We next present results on real speech data from the NOIZEUS
database [30]. We took a sentence and computed the Fourier
magnitude spectra based on a 20 ms sliding window approach.
Each frame is separately reconstructed using the technique de-
scribed in Section 2. The ground truth signal, the reconstructed
signal, and their spectrograms are shown in Figure 3. The re-
construction signal-to-noise ratio (SNR) is computed as the ra-
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Figure 4: Original and reconstructed speech signals and their
corresponding spectrograms. The spectrograms have been com-
puted using a Hann window of duration 100 ms. The recon-
struction SNR is 42.08 dB.
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Figure 5: Original and reconstructed speech signals and their
corresponding spectrograms. The spectrograms have been com-
puted using a triangular window of duration 20 ms. The recon-
struction SNR is 37.58 dB.

tio of reconstructed signal energy to the energy in the recon-
struction error signal (difference between the original signal and
the reconstructed signal), expressed as a logarithm. The spec-
trograms are shown to the same dynamic range of 120 dB on
both subplots. From the figure, it is clear that the reconstruction
is accurate. We next repeated the experiment with a window
duration of 100 ms. The results are shown in Figure 4. Note
that the reconstruction is accurate. This result implies that the
usual choice of 20 ms window is not critical for the particu-
lar reconstruction technique presented in this paper. In other
words, the reconstruction technique remains valid and in fact
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Figure 6: Original and reconstructed speech signals and their
corresponding spectrograms. The spectrograms have been com-
puted using a triangular window of duration 100 ms. The recon-
struction SNR is 42.87 dB.

better even when the analysis duration is considerably longer
than the usual 20 ms. The experiments were also repeated with
a different window function (triangular instead of Hann win-
dow). The results are shown in Figures 5 and 6, for window
durations of 20 ms and 100 ms, respectively. In both cases, we
observe that the quality of reconstruction is good. This experi-
ment demonstrates that the technique is not critically dependent
on the shape of the window function.

4. Conclusions
We addressed the problem of speech reconstruction from short-
time Fourier magnitude spectrum. We showed that by adding
an impulse of the right amplitude to the sequence before com-
puting the short-time spectrum, one can ensure that exact sig-
nal reconstruction is possible from the magnitude spectrum.
Essentially, the modification ensures that the signal becomes
minimum-phase. Hitherto, one would check for the minimum-
phase property by explicitly determining the locations of the
poles and zeros with respect to the unit circle, but this is not
necessary. Thus, the phase of the signal can be encoded in the
magnitude spectrum and it can be retrieved exactly by following
the reconstruction method presented in this paper. We showed
simulation results as well as results on real speech signals to val-
idate the claims. Quite surprisingly, it turned out that within the
framework of the proposed reconstruction technique, the win-
dow shape is not critical and longer windows turned out to be
better in terms of the reconstruction SNR. The signal was re-
constructed with high accuracy for both Hann and triangular
windows when the short-time spectral magnitudes were com-
puted with 20 ms duration and with 100 ms duration. Thus,
phase encoding in speech spectrograms is possible irrespective
of whether the analysis is short-term or long-term. The pro-
posed phase encoding approach might find potential applica-
tions in developing speech representations for speech synthesis
applications and recognition.
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