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Abstract
This work investigates whether nonlexical information

from speech can automatically predict the quality of small-
group collaborations. Audio was collected from students as they
collaborated in groups of three to solve math problems. Experts
in education annotated 30-second time windows by hand for
collaboration quality. Speech activity features (computed at the
group level) and spectral, temporal and prosodic features (ex-
tracted at the speaker level) were explored. After the latter were
transformed from the speaker level to the group level, features
were fused. Results using support vector machines and random
forests show that feature fusion yields best classification per-
formance. The corresponding unweighted average F1 measure
on a 4-class prediction task ranges between 40% and 50%, sig-
nificantly higher than chance (12%). Speech activity features
alone are strong predictors of collaboration quality, achieving
an F1 measure between 35% and 43%. Speaker-based acous-
tic features alone achieve lower classification performance, but
offer value in fusion. These findings illustrate that the approach
under study offers promise for future monitoring of group dy-
namics, and should be attractive for many collaboration activity
settings in which privacy is desired.
Index Terms: speech analytics, speech activity detection, spec-
tral, temporal and prosodic features, machine learning, student
collaboration, collaborative learning, classroom education

1. Introduction
This study is part of a new multi-year project that aims to build
privacy-preserving speech-based analytics for the automatic as-
sessment of multi-student collaboration in a school setting. Col-
laboration is an important 21st-century skill that students must
be able to master as they progress through school and beyond
[1]. Research has shown that students need feedback in the
school environment to develop collaboration skills. Many do
not come to class with experience in how to engage with their
peers in collaborative activities and how best to work together
productively in groups [2].

Teacher assessment of group collaboration is a challenge
in today’s classrooms, since class size typically makes it infea-
sible for a single teacher to monitor a large number of small
groups simultaneously [3]. The ultimate goal of the project is
to produce knowledge about the feasibility of speech analytics
and the creation of adaptive software that could help teachers
by identifying groups that need feedback in real time, as well as
by helping teachers to better target their interventions.

Information from speech is a key knowledge source for the
effort, since collaborative learning in classrooms usually takes
place through natural language. Although there are many ap-
proaches (e.g., keystroke data, written responses) for gathering
diagnostic information about collaborative learning, most col-
laborative learning involves peer discourse. Automated analysis
of peer discourse in collaborative learning has been successful
[4, 5, 6], but most past work has focused on non-spoken modal-
ities, e.g. using chat rooms [4].

Though speech data is uniquely central and authentic to
peer discourse, the field does not yet have key knowledge of au-
tomatically analyzed speech in small group collaboration. Some
exploratory work has successfully developed speech analytics
for a situation in which one student is asked to answer a ques-
tion while on camera [7]. Other researchers have taken a differ-
ent approach that tries to apply speech analytics to very specific
and sophisticated aspects of collaborative learning, such as idea
co-construction [8] and transactive contributions [9].

This project focuses on simpler behaviors in collaborative
situations. To preserve privacy, which is a key issue when work-
ing with children, no words and no video signals are used. The
setup uses non-lexical features only, is lightweight and requires
only basic equipment (microphones). Furthermore, there is no
dependency on automatic word recognition, which is a current
challenge in the context of the classroom setting.

In a first exploration using a subset of the new corpus
[10, 11], we found that features that capture when each partic-
ipant speaks, as well as how each participant speaks, are good
predictors of collaboration quality. In this study, we analyze
the full collected data set, and explore a wider range of group
speech activity features and prosodic, spectral and temporal fea-
tures. We also investigate how to fuse features that are taken
from the group with those taken from individual talkers, and we
explore a range of classifiers for the prediction task.

2. Data Collection
Collaborative math activities included 12 separate math prob-
lems. Participating students, organized in groups of three, had
to work together and talk to each other to coordinate their three
answers to the problems. 141 middle school students (67 in
sixth grade, 40 in seventh grade, and 34 in eighth grade) from
six different schools participated in the study. The gender
breakdown was evenly split across the students.

The data was collected during 86 collaborative sessions,
each lasting about 15-20 minutes. Most students participated
in 2 sessions with different group configurations. In each ses-
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sion, each group was recorded by video, and audio recordings
were collected using individual noise-cancelling microphones
worn by each student. These audio recordings were divided into
segments that corresponded to the time that the group spent on
a particular math problem (items). The items were further di-
vided into 30-second windows. Depending on the length of the
item, some windows were less than 30 seconds. Windows less
than 5 seconds long were discarded. In total, there were 866
items and 2942 windows.

Data at the levels of item and window were annotated by a
team of five education researchers. In order to ensure reliabil-
ity on the annotations, all annotators were trained on the coding
scheme and went through a calibration process. The average
of the Cohen’s kappa score [12] for each pair of judges across
four sessions was 0.612 after training, which is an acceptable
level of reliability for this type of annotation task [13]. During
the annotation process, additional calibration instances were se-
lected to prevent significant drift on the application of the codes.
All disagreements were discussed by the annotators and a final
code was assigned. The annotators had to assign one of four
collaboration quality codes (Q codes). The Q codes represented
the degree to which the three students of the group were col-
lectively engaging in good collaboration. It should be noted
that the codes depend on whether and how much each student
was intellectually engaged in the group problem solving, and
not on simply the duration of each student’s speech. More suc-
cessful collaboration occurs when students engage each others’
thinking [14]. In other words, the collaboration quality codes
differentiated between simple engagement (whether or not stu-
dents were talking and paying attention) and intellectual en-
gagement (whether or not the students were engaged in actively
solving the problem at hand). The annotators made their deci-
sions based on both the audio and the video recordings. The Q
codes are defined as follows:

• Good Collaboration (“Good”): All three students are
working together and intellectually contributing to prob-
lem solving.

• Out in the Cold (“Cold”): Two students are working to-
gether, but the third is either not contributing or is being
ignored.

• Follow the Leader (“Follow”): One student is taking the
intellectual lead on solving the problem and is not bring-
ing in others.

• Not Collaborating (“Not”): No students are actively con-
tributing to solving the problem; each is either off-task,
or working independently.

The distribution of the Q codes assigned at the window level is
0.34 for the “Good Collaboration” class, 0.27 for the “Out in
the cold” class, 0.21 for the “Follow the leader” class and 0.18
for the “Not Collaborating” class.

3. Features
3.1. Speech activity features

During the data collection and experimental setup, students
were recorded by individual noise-cancelling microphones. As
a result, a separate audio-channel was collected for each student
in the group. Also, students were allowed to speak freely re-
sulting in audio recordings that exhibit overlapping speech from
the three students. To overcome this problem, a Speech Activity
Detection (SAD) system was used to identify the speech regions
and exclude the silent and noisy regions. This SAD system,
which was based on a speech variability threshold optimized on

a small set of four samples [15, 16], was run independently on
each of the 3 student channels. The thresholded output on each
audio channel was used to identify the student-specific speech
signal and eliminate the noise, silence or cross-talk regions.

The features derived from SAD output capture informa-
tion about the amount, duration, and location of speech regions,
much like the features used in studies of dominance in multi-
party meetings [17, 18]. However, the features we extracted
differ. In detail, several duration-related statistics were created
using the SAD output. These features are the total duration of
speech for each student (“Total Duration 1”, “Total Duration 2”,
and “Total Duration 3”), the duration in which each student was
the only speaker (“Solo Duration 1”, “Solo Duration 2”, and
“Solo Duration 3”), the duration of overlapping speech from
each pair of students (“Overlap Duration 1-2”, “Overlap Dura-
tion 1-3”, and “Overlap Duration 2-3”), the duration of overlap-
ping speech among the three students (“All Duration”), and the
duration in which all students were silent (“No Duration”).

From these SAD-derived statistics, only “All Duration” and
“No Duration” could be used directly as group-level features,
since they characterize the whole group. The remaining sets
of features (three each for Total, Solo and Overlap Durations)
reflect the SAD activity for individual speakers or speaker pairs.
In order to obtain group-level features for these sets, each of the
three statistics in each set was converted to proportions p(x) by
dividing them by their sum. Then, the distribution of each set
was estimated by means of the Shannon Entropy [19]:

H(X) = −
∑
x∈X

p(x) log2 p(x) (1)

In our case, there are 3 speaker-level measurements per set.
Thus, the entropy values range between 0 and log2 3 ≈ 1.585.
The minimum value indicates a window during which only one
of the students (or overlapping pairs) speaks, while the maxi-
mum value indicates a window during which all three students
(or overlapping pairs) are speaking equally.

Since only minimum and maximum entropy values have a
clear interpretation in this context, we created another type of
group-level feature to capture the relationship between speaker
durations: ratio statistics. “Ratio 1” is computed by dividing
the second most talkative student (or pair) by the most talkative
student (or pair). “Ratio 2” is computed by dividing the least
talkative student (or pair) by the most talkative student (or pair).
These ratios can be interpreted as the relative duration of the
second most and least talkative students (or pairs) relative to the
most talkative student.

3.2. Spectral, temporal and prosodic features

In our data collection setup, students were allowed to speak
freely and one of our core goals has been to capture a diverse
set of speech features, such as spectral, temporal, prosodic and
tonal. We aimed to use a such diverse set of features to have a
holistic view of which major categories of speech features are
indicators of good collaboration. In addition, we extracted all
speech features for each student independently. The frame shift
of the features is 30ms and the window varies from 20− 40ms.
The frame level features include the Mel frequency cepstral co-
efficients (MFCC) [20]. The MFCC represent the cepstral in-
formation of the signal. Other spectral and energy-based fea-
tures which were computed include the energy of 4 frequency
bands as features, the time-domain energy, and the statistics of
the spectrum (mean, variance, kurtosis and skewness). Noise-
robust features include the RASTA features, which filter invari-
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ant and rapidly variant noise types. Furthermore, we included
features which capture the harmonic content of the signal, such
as harmonicity and voicing. For the last two features, we used
zero crossing rate and chroma, which measure the dominant
formants and tonality of the speech signal. To extract the fea-
tures, we used a variety of open source [21, 22] and SRI-owned
tools. Finally, after the frame features were extracted, the fea-
tures were averaged at the segment level. All features were
speaker-normalized by subtracting the speaker mean over the
session. Unlike the speech activity features described in Sec-
tion 3.1, these speaker-based extracted features are “blind” to
the prosodic activity and speech characteristics of the other par-
ticipants. This approach provides a real-time processing advan-
tage, but the performance is expected to be suboptimal since
the features from each individual speaker contain no informa-
tion about the behaviour of the other speakers.

3.3. Feature fusion

Speaker-based features were also combined with speech activ-
ity features by means of early fusion. To achieve this, the spec-
tral, temporal and prosodic features had to be transformed from
the speaker level to the group level. To this end, three differ-
ent approaches that map these features to the group level were
proposed:

• Entropy-based mapping: The distribution of each
speaker-level feature was combined by means of the
Shannon entropy [19], as described in Section 3.1.

• SAD-ordered based mapping: The features extracted
from each speaker of the group were stacked into a sin-
gle feature vector by taking into account the duration of
speech of each speaker in the group. That is, the speak-
ers of each group were sorted based on their speech du-
ration within each window, and their corresponding fea-
tures were then stacked based on this ordering. In this
sense, the features at the group level are comprised of the
feature values for the most talkative speaker within the
window, followed by the feature values for the second
most talkative speaker, followed by the feature values for
the least talkative speaker within the same window.

• MinMax-ordered based mapping: This approach is simi-
lar to the previous one in the sense that the speaker-level
features for speakers of the same group are stacked, but
the stack ordering is determined by the raw feature val-
ues. That is, the features at the group level are comprised
of the maximum feature value, followed by the second
maximum features values within the window, followed
by the minimum feature values within the same window.

These transformation approaches attempt to capture a variety of
dynamics of speech characteristics within the group. For ex-
ample, regarding loudness, Entropy-based mapping can differ-
entiate between a group in which one student is much louder
than the rest and a group of equally loud students. Similarly,
SAD-ordered mapping and MinMax-ordered mapping capture
the loudness of the least-talkative student and the quietest stu-
dent, respectively.

4. Classification
The dataset was partitioned into a development set and a held-
out set. Special care was exercised to prevent speaker overlap
between these two sets. 70% of the data were used in the de-
velopment set, and 30% of the data were used in the held-out

set. The development set was used for tuning the parameters
and training the classifiers, while the held-out set was used for
the assessment of the classification performance.

Classification was performed by employing two different
types of classifiers: support vector machines (SVMs) [23] and
random forests [24]. In our earlier work on a subset of the
data and features [11], tree-based classifiers yielded good clas-
sification results. In this experimental setup, we also added
SVMs that are known to give good results in many complex
classification tasks. For SVMs, a Radial Basis Function (RBF)
kernel was used with three different values for the kernel pa-
rameter, γ = 0.1, 0.01, 0.001. For random forests, experi-
ments with 10, 20, 50, 100, 500 and 1000 estimators were per-
formed using the information gain as a measure of quality for
each split. Additionally, automatic feature ranking and selec-
tion was performed by means of a Recursive Feature Elimina-
tion (RFE) procedure. Initially, the estimators were trained on
the full set of features. At each iteration step, a number of fea-
tures were removed until a pre-selected number of features was
reached. Based on the higher unweighted F1 measure estimated
across a 10-fold cross-validation scheme on the development
set, the best classifier with its optimal parameters and the opti-
mal number of features were selected. As before, during cross-
validation, folds were created so that no speakers were present
in both train and test set partitions.

5. Results and Discussion
Group-level features based on speech activity were comprised
of 2942 datapoints with 20 dimensions each. Spectral, temporal
and prosodic features were extracted at the speaker level. Since
there were 3 speakers per group, there were 3 times as many
datapoints (8826 datapoints) with 138 feature dimensions each.
After applying the transformation to the group level, the result-
ing features consisted of 2942 datapoints with 138 dimensions
each when the entropy-based fusion was used, and with 414 di-
mensions each when the other two fusion methods were used.

Initially, a set of classification experiments was conducted
using a first subset of 5 extracted speech activity features. These
features are: “All Duration”, “No Duration”, and the entropy
statistic for “Total Duration”, “Solo Duration” and “Overlap
Duration” features. Then, all the 20 speech-activity features
were included in a second set of experiments. In the rest of the
paper, we refer to these two sets of experiments as Experiment
I and Experiment II, respectively.

Classification performance was evaluated by estimating
both the accuracy and the F1 measure in the held-out set. These
results are presented in Tables 1 and Tables 2 for Experiments
I and II, respectively. Results are shown at both the class level
(Q codes) and across classes by means of unweighted averages
that account for the performance of each class equally. Best
performance across each line is shown in bold for F1 and ac-
curacy. SAD features alone are better predictors than the tem-
poral, spectral and prosodic features alone. In terms of overall
F1, SAD features outperform the speaker-based extracted fea-
tures by 7.8% in Experiment I and by 16.1% in Experiment II.
Similarly, SAD features achieve a higher overall accuracy than
the speaker-based extracted features by 10.4% and by 16% in
Experiments I and II, respectively. This was expected because
classification using the speaker-based features uses information
from individual speakers to predict group-level labels. How-
ever, these features also seem promising, since they show the
ability to predict the “follow” and “not” classes. In Experi-
ment I, the accuracy of the “follow” class is higher by 8.7%
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Table 1: Per-class and overall unweighted (UW) F1 and accuracy values when only spectral, temporal and prosodic (S/T/P) features
are used; when only SAD features are used; and when the fused features are used (Experiment I).

S/T/P (speaker-level) SAD (group-level) Entropy-based fusion SAD-ordered fusion MinMax-ordered fusion
Q Code F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy
Good 40.3% 43.2% 52.5% 73.4% 65.0% 67.0% 64.9% 70.2% 53.8% 64.5%
Cold 27.8% 27.3% 46.5% 48.0% 51.0% 58.4% 45.8% 56.4% 49.2% 58.8%
Follow 21.8% 22.5% 21.0% 13.8% 31.1% 26.5% 24.6% 18.9% 26.5% 19.0%
Not 19.2% 16.5% 21.3% 15.8% 31.6% 27.9% 47.5% 41.9% 27.0% 20.9%

UW average 27.3% 27.4% 35.1% 37.8% 44.7% 45.0% 45.7% 46.9% 39.1% 40.8%

Table 2: Per-class and overall unweighted (UW) F1 and accuracy values when only spectral, temporal and prosodic (S/T/P) features
are used; when only SAD features are used; and when the fused features are used (Experiment II).

S/T/P (speaker-level) SAD (group-level) Entropy-based fusion SAD-ordered fusion MinMax-ordered fusion
Q Code F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy
Good 40.3% 43.2% 71.2% 85.0% 70.5% 73.3% 64.6% 72.9% 66.4% 73.3%
Cold 27.8% 27.3% 50.7% 44.6% 48.5% 54.7% 48.0% 61.3% 48.9% 48.6%
Follow 21.8% 22.5% 38.2% 36.0% 41.3% 37.5% 33.2% 23.9% 29.2% 29.7%
Not 19.2% 16.5% 13.5% 8.0% 40.2% 31.5% 28.6% 21.2% 25.8% 19.0%

UW average 27.3% 27.4% 43.4% 43.4% 50.1% 49.3% 43.6% 44.8% 42.6% 42.7%

when the speaker-level S/T/P features are used instead of the
SAD features, while in Experiment II, the S/T/P features yield
a higher accuracy by 8.5% for the “not” class compared to
the SAD features. This promising performance of the speaker-
level features is further verified by the fusion results. In detail,
when the speaker-based features are combined with the SAD
features in Experiment I, the latter’s performance in terms of
unweighted F1 is improved by 9.6% for the entropy-based fu-
sion, by 10.6% for the SAD-ordered fusion, and by 4% for the
MinMax-ordered fusion. For Experiment II, there is a gain of
6.7% in F1 when the Entropy-based fusion is used, while the
other two fusion methods do not seem to contribute towards
improving the initial SAD features performance. This implies
that when the SAD features are not powerful predictors on their
own (as in the case of Experiment I), they can be enhanced by
speaker-based features. This is important, since the extraction
of speaker-based features is straightforward and independent of
the group information. It is also worth noting that all the re-
sults are well above chance performance when a “brute force”
method is used that assigns all samples to the label with the
most frequent class (i.e., “good”). The unweighted F1 in this
case is 12.2%.

The best results for the SAD features alone were derived
when SVMs were used for classification. For Experiment I, the
SVM kernel parameter is γ = 0.01 and the optimal number of
selected features is 4 out 5. For Experiment II, γ = 0.001 and
14 out of 20 features are kept. In the case of spectral, temporal
and prosodic features, the best results are obtained with ran-
dom forests employing 100 estimators. The optimal number of
features in this case is 48 out of 138. The best results for the fu-
sion methods are derived with random forests employing 1000
estimators. When fusion with the SAD subset of Experiment I
is applied, the optimal number of features is 12 out of 143 for
the entropy-based approach, 29 out of 419 for the SAD-ordered
method and 19 out of 419 for the MinMax-ordered approach.
The corresponding optimal numbers of features for Experiment
II are: 35 out of 158 for the entropy-based approach, 69 out
of 434 for the SAD-ordered approach, and 26 out of 434 for
the MinMax-ordered based approach. It is also worth mention-
ing that in all fusion approaches the top ranked 4 features in
Experiment I are SAD features. In Experiment II, 17 SAD fea-
tures are included in the optimal features, and most of them are

ranked higher. This observation further supports our expecta-
tions, which were also validated by the classification results.
That is, the SAD features alone are better collaboration predic-
tors than the prosodic features alone, since they are directly ex-
tracted on the group level in contrast to the speaker-level S/T/P
features which are agnostic to the group information. The com-
plimentary power of the S/T/P features was also validated.

6. Conclusions
We studied the automatic prediction of collaboration quality
among students by exploiting group-based durational statistics
and speech analytics. Speech activity features were estimated
on the group level and spectral, temporal and prosodic features
were extracted at the speaker level. The combination of the two
types of features was also investigated by employing three dif-
ferent approaches for mapping the speaker-level features to the
group level. Results reveal that both speech activity features
and speaker-based features are good predictors of collaboration
quality, while their combination by means of fusion can con-
siderably improve their collaboration prediction performance.
Results demonstrate that privacy-preserving automatic speech
features offer promise for future applications that can monitor
multiple groups simultaneously for collaboration quality. Fu-
ture work will focus on examining whether the proposed ap-
proach can detect specific features of participation such as turn-
taking, crosstalk, emotion and off-task behaviors. We will also
work with more fine-grained annotations for collaboration pre-
diction. To this end, a wider range of features and modeling
approaches will be investigated. Also, prediction using lexical
features will be explored. Finally, the utility of the automatic
feedback for teachers in the classroom will be investigated.

7. Acknowledgements
We gratefully acknowledge the contributions and support of Di-
ana Jang, Erik Kellner, Tiffany Leones, Tina Stanford, Jeremy
Fritts and Jeremy Roschelle. This material is based upon work
supported by the National Science Foundation under Grant No.
DRL-1432606. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the National
Science Foundation.

891



8. References
[1] N. R. Council, Assessing 21st century skills: Summary of a work-

shop. Washington, D.C.: The National Academies Press, 2011.

[2] G. Ladd, B. Kochenderfer-Ladd, K. Visconti, I. Ettekal, C. Sech-
ler, and K. Cortes, “Grade-school childrens social collaborative
skills: Links with partner preference and achievement,” Am. Educ.
Res. J., vol. 51, no. 1, pp. 152–183, 2013.

[3] E. Cohen, “Restructuring the classroom: Conditions for produc-
tive small groups,” Rev. of Educ. Res., vol. 64, no. 1, pp. 1–35,
1994.

[4] G. Erkens and J. Janssen, “Automatic coding of dialogue acts in
collaboration protocols,” Int. J. Comput. Collab. Learn., vol. 3,
no. 4, pp. 447–470, 2008.

[5] B. McLaren, O. Scheuer, M. D. Laat, R. Hever, R. D. Groot, and
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