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Abstract

A complete voice-driven experience in applications such as
wearable electronics requires always-on keyword monitoring,
which is prohibitively power consuming using current speech
recognition methods. In this work, we propose an ultra-low
power voice command recognition system that is designed to
recognize short commands such as ‘Hi Galaxy’. To achieve
power-efficient designs, the system uses adaptive feature pre-
selection such that only a subset of all available features are
selected and extracted based on the noise spectrum. The back-
end classifier, supporting adaptive feature selection, is enabled
by a novel multi-band deep neural networks (DNNs) model
that processes only the selected features at each decision. In
experiments, our adaptive scheme achieves comparable accu-
racy and improved efficiency using an average of 5 spectral
feature bands, than a generic fully-connected DNNs model us-
ing the full speech spectrum. The system makes a recogni-
tion decision every 40ms on 1.2s of buffered speech and con-
sumes ∼ 230µW of power, thus promising low-power, low-
complexity and robust application-specific voice recognition.
Index Terms: Deep neural networks, keyword spotting, low
power, band selection

1. Introduction
The complexity of current speech recognition algorithms ex-
ceeds the power constraints and computation capability of typ-
ical mobile devices such as smart phones and watches. While
primary processing can be relegated to powerful hosts that re-
side in the cloud, system activation remains problematic for a
completely voice-driven experience. Hence, there are rising in-
terests in finding simple, low-power solutions for the task of
voice wake-up.

Prior work relevant to voice wake-up is found in the key-
word spotting (KWS) literature [1, 2, 3, 4]. In KWS, the pro-
cessing of speech waveforms into keyword decisions follows a
two-stage pipeline: (1) a feature extraction front-end transforms
raw speech into low-dimensional features, and (2) a back-end
classifier decides from features whether a candidate keyword
was uttered.

For the first stage, Mel-frequency cepstral coefficients
(MFCCs) are widely used as features [5]. When used as input
into the DNNs, raw spectral features (i.e., filterbank features)
are found to yield better performance than further transformed
cepstral coefficients [6, 7]. The second stage involves classical
pattern recognition to distinguish candidate classes. Template-
based algorithms match features from candidate class samples
directly to query features [4, 8], while model-based algorithms
render the speech features as statistical emissions from a class
[9, 10, 11]. Recent developments toward using DNNs for KWS

Figure 1: System block diagram: the filter-bank outputs from
each sub-band is fed to its corresponding sub-module of the
classifier. The final recognition decision is a weighted sum
of sub-band decisions. During training all the sub-bands are
turned on. During recognition, the control unit pre-selects a
subset of all available sub-bands and only the selected sub-band
features (e.g., the green blocks) are extracted and processed.

suggest that DNN models significantly improve accuracy over
conventional HMM models [1].

While these existing KWS systems achieve excellent accu-
racy, they are prohibitively power-consuming for standalone de-
vices due to the extraction and processing of high-dimensional
features (e.g., 40-dim MFCC at 100 frames per second). In
this paper, we propose an adaptive voice command recognition
system that achieves ultra-low power consumption, accuracy,
and robustness by enabling the dynamic processing of an adap-
tively selected set of features. Specifically, an analog front-end
(AFE) extracts spectral features from only the desirable sub-
bands, which are selected based on the background noise, and a
novel multi-band DNN classifier completes the recognition task
with only the selected sub-band features as partial input. By ad-
justing the features in use judiciously, the average system com-
putation complexity is significantly reduced without sacrificing
recognition accuracy for the task of voice-command recogni-
tion. By selecting features based on signal quality and actively
turning off noisy bands, the system achieves better noise robust-
ness than using all available spectral features.

We describe the overall system in Sec. 2 and introduce the
multi-band DNN model in Sec. 3. Sec. 4 describes experiments
and practical measurements. Assume continuous triggering, our
system continuously listens to and adapts to the surrounding
environment in order to recognize a wake-up command such as
‘Hi, Galaxy’. A command-level decision on a buffer of 1.2s
of sound information is made every 40ms using ∼ 230µW of
power. The recognition accuracy is 99% under quiet conditions,
and is approximately 97% under various background noise.
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2. System description
Fig. 1 shows the high-level system architecture. The main unit
consists of the feature extraction AFE and the multi-band DNN
back-end. An external control unit wakes up the main unit
whenever an incoming signal of sufficient total power is de-
tected, and more importantly, it adaptively selects a small num-
ber (e.g., ∼ 5) of spectral features based on criteria such as the
in-band signal-to-noise ratio (SNR) of the sub-bands.

Both the AFE and the back-end are designed to efficiently
support adaptive band-selection so that only the selected fea-
tures are extracted and processed to make the recognition de-
cision. The AFE consists of a band-pass filter-bank, which
extracts the contents within the selected frequency sub-bands
of raw speech. The AFE outputs are the accumulated power
within each time frame for the selected sub-bands. The backend
DNN-based classifier employs a multi-band model. In contrast
to the conventional approach of interpreting a time-sequence of
spectral feature vectors as a single super-vector, the multi-band
model performs classification disjointly for each sub-band us-
ing their corresponding time-sequence of single-band features
(as shown in Fig. 1). The final output is a weighted sum of
the sub-band decisions. The multi-band model not only enables
adaptive feature selection, but the sparsely-connected structure
also requires less computation than the fully-connected DNN
(e.g., [1]) given a fixed feature dimension.

System support for adaptive processing is highly benefi-
cial because speech content for recognition is redundant in the
spectral sub-bands, and a subset of all available bands can be
sufficient for the task of voice wake-up. Hence, we can scale
processing power by using fewer sub-band features when there
is no background noise and more features when there is noise.
In addition, adaptive feature selection can mitigate the loss of
granular SNR as in the conventional approach, which concate-
nates all sub-band features into a super-vector regardless of
noise conditions, resulting in poor recognition even when only
a single band may be corrupted. In contrast, adaptive selection
results in better robustness by actively discarding the noisy fea-
tures and retaining only the high quality ones.

3. Adaptive multi-band DNN
Deep learning with neural networks has demonstrated state-of-
the-art performance in a range of speech recognition tasks [12,
1]. In contrast to the conventional approach of modeling the
time-frequency features as a whole using one fully-connected
DNNs, we use a multi-band DNN.

3.1. The multi-band DNN

As illustrated in Fig. 2, the time-frequency features are divided
into separate sub-bands {x1,x2, . . . ,xN}. Each of xi rep-
resents a time-sequence of filter-bank features within a single
sub-band over the duration of a keyword (e.g., ∼ 1s). Each
sub-band is then modeled with a fully-connected DNN whose
top layer has two nodes, representing the ‘keyword’ and ‘out-
of-vocabulary’ (OOV) classes. The top layers of all sub-band
DNNs are then connected to the final decision output layer.

The multi-band DNNs model offers the following key ben-
efits. Adaptive band-selection: When the sub-band parameters
are trained disjointly, the multi-band model can be used to sup-
port adaptive band-selection such that only the selected sub-
bands are active. Model size: Let N denote the total number
of frequency bands. Given a fixed number of hidden layers and
a fixed number of nodes per layer, the number of edges in the

Figure 2: The multi-band DNNs model: each sub-band is mod-
eled with a separate fully-connected DNN and the individual
sub-band decisions are merged at the sub-band output layer.

multi-band DNN model increases linearly with N , whereas it
increases with N2 in the fully-connected DNNs because nodes
corresponding to different bands are cross-connected. As a re-
sult, the multi-band DNN model requires a factor of N fewer
multiplications for the recognition task given fixed feature and
hidden-layer dimensions; and its sparse structure requires less
data for model training. Combing adaptive band-selection and
the multi-band model, system complexity and power consump-
tion of back-end recognition are reduced.

3.2. Training and classification

Training: The parameters for each sub-band DNN can be
trained in a substantially disjoint fashion. We take two ap-
proaches for training. In the first approach, each sub-band
DNN is treated as an independent classifier trained with the
back-propagation algorithm, followed by the weighted-majority
algorithm [13] to obtain the weights of output layer with all
sub-bands simultaneously presented. Higher weights are as-
signed to sub-bands with better accuracy. In the second ap-
proach, the sub-band DNNs are first trained independently.
Then, the parameters of the individual sub-bands are fine-tuned
in sequence using the back-propagation algorithm along with
AdaBoost[14, 15, 16], which combines a set of weak classifiers
to construct a strong classifier. At each iteration, the weights
of the training samples are updated based on the errors made
by the current sub-band classifier, and these weights are used to
adjust the back-propagating error for each sample when training
the next classifier. At the end, sub-band weights at the top layer
are obtained as a result from AdaBoost.

Classification: As illustrated in Fig. 2, the sub-band de-
cisions are combined as a weighted sum at the final out-
put layer. Let S ⊂ {1, ..., N} denote the set of ac-
tive bands, {x1, . . . ,xN} denote inputs to the N sub-bands,
{w1, . . . , wN} denote the weights at the sub-band outputs, and
Y = {y1, y2} denote labels for the two output classes. Let
hn(xn, yi) represent the soft-decision output at sub-band n.
Then the final output is a weighted sum of the active sub-band
decisions:

∑
n∈S wnhn(xn, yi).

3.3. SNR-based adaptive selection

In the case where sub-bands are selected based on SNR, the
active band set S for classification is chosen as follows. We
first estimate the sub-band in-band SNRs using the spectrum
power distribution obtained from speech training samples and
real-time noise power measurements in each band. Let θSNR de-
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Figure 3: Performance comparison: the multi-band DNNs offer
accuracies comparable to the fully-connected DNNs. Unlike
the fully-connected model, the multi-band model does not suffer
from over-fitting when the number of bands increases.

note the minimum desired in-band SNR threshold and let Kmax

denote the maximum number of bands to be turned on. The ac-
tive set S includes the bands with the best in-band SNRs such
that a maximum of Kmax bands are chosen and all the bands in
S must have SNR higher than θSNR. If S is empty, then use the
single band that has the highest in-band SNR.

4. Experiments
4.1. Experiment setup

We analyze the multi-band DNNs model in two sets of exper-
iments. First, we investigate how well the multi-band DNN
structure can model speech commands by comparing it with
the conventional fully-connected DNN, in which all the sub-
bands are inter-connected. In this case, we fix the band selec-
tions and analyze the performance when the same sub-bands are
used for both training and classification. The band selection is
chosen from the 13-band Mel-frequency filter banks in a way
that yields the best accuracy among all choices of the same sub-
set cardinality. We analyze the performance as the number of
sub-bands increases. Second, we study the system performance
with adaptive feature selection (Sec. 3.3), with SNR threshold
set to θSNR = 5 dB and maximum band usage Kmax = 5.

4.1.1. Data sets

The clean data set includes 3000 positive examples of the key-
word ‘Hi Galaxy’ recorded by 100 different speakers, and 32k
negative examples (12k examples of other commands and 20k
short phrases taken from audio books and audio shows). The
noisy-condition data sets are generated by adding to each sam-
ple of the clean data set either a recording of real noise data or
a pseudo-noise sample of defined spectral statistics.

4.1.2. Model size and algorithm implementation

Recognition is performed at the command level with 1.2s of
audio content. The features are extracted at a frame rate of 10ms
and down-sampled to 50 samples per second. As a result, the
input feature dimension is 60 for each of the K sub-bands of
the multi-band model and it is K × 60 for the fully-connected
model (K is the number of active bands). Both the multi-band
DNN and the fully-connected DNN have 3 hidden layers, whose
dimensions reduce by 1/2 at each layer.

In each simulation configuration, a random 90% of samples
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Figure 4: ROC corresponding to operating points from Fig. 3.
Recognition accuracy improves as the number of bands in-
creases and stops at around 4 bands when there is no back-
ground noise and at 8 bands under noisy conditions.

are used for training and the remaining 10% are withheld for
testing. This is repeated 10 times and the results are averaged.
The back-propagation algorithm is implemented with the mean-
square-error cost function and random parameter initialization.
The learning rate is 0.01 and the training procedure terminates
when the gradient is less than 10−7 or when it exceeds 1000
iterations. For the fully-connected model, when it is trained
with dropout[17], the probability of retention is 0.9 for the input
layer and 0.5 for the hidden layers.

4.2. The fixed multi-band DNN experiments

In these experiments, noisy samples are generated by adding
scaled real noises (e.g., babble noise, car noise, wind noise, ra-
dio and audio book noise) so that the total SNR is 0dB.

Fig. 3 plots the accuracy (1 - EER) of the fixed multi-band
model and the fully-connected model as a function of the num-
ber of frequency bands under quiet and noisy conditions. There
are three main points to note from Fig. 3. First, even though
the multi-band model presumes a disjoint structure among dif-
ferent bands, the multi-band model yields similar recognition
accuracy as the fully-connected model for our task of single
command recognition. Secondly, the performance of the multi-
band model increases steadily with the number of bands and
saturates at 4 bands and 8 bands under noiseless and noisy con-
ditions, respectively. Similar behavior can be seen from the re-
ceiver operating characteristic (ROC) curves shown in Fig. 4.
This implies that, computation resources can be optimized by
using fewer bands under quiet conditions and by including more
bands when noise is present. Lastly, the multi-band structure
allows the training data size per band to be independent of the
number of bands, whereas the fully-connected model requires
an increasing number of training samples with increasing num-
ber of bands N . This is illustrated in Fig. 3, where it shows
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Figure 5: Experiments under pseudo-noise: with < 4 bands on
average, the adaptive multi-band method achieves an accuracy
of 97.5%, outperforming the 13 band fixed multi-band method.

that, when the fully-connected DNN model is trained without
dropout, over-fitting occurs when the number of bands exceeds
a certain threshold.

4.3. The adaptive multi-band DNN experiments

Here, two types of noisy samples are used. First, pseudo-noise
are added to clean samples. The spectrum of the noise samples
are shaped to be band-wise white in 500Hz bands in the range
of 0-8kHz with in-band SNR randomly chosen between−10dB
and 15dB. In the second set, real noise (wind and car noise)
are added to clean samples such that the total SNR is randomly
chosen between −5dB and 10dB.

Fig. 5(a) shows the performance of two adaptive multi-band
schemes relative to the fixed multi-band scheme under pseudo-
noise. On average, fewer than 4 frequency bands are chosen by
adaptivity. The AdaBoost method and the weighted-majority
method yield an EER accuracy of 97.5% and 96.7%, respec-
tively. The best performance for the fixed multi-band method
is achieved with 13 bands, and yields an accuracy of 96.8%,
which is slightly less than the AdaBoost method, demonstrat-
ing the substantial benefits of rejecting noisy bands. Similar
observations are shown in the ROC plot in Fig. 5(b).

Fig. 6(a) plots the results under wind and car noises, which
is common for our application and has the special character-
istics of concentrating narrowly in low frequencies. Similar to
the case with pseudo-noise, by adaptively selecting a subset of 5
features using the procedure described in Sec. 3.3 and Sec. 4.1,
the adaptive system achieves comparable performance as the
fixed (non-adaptive) approach, which uses more than twice the
number of features.

4.4. Power evaluation on hardware

The total system power consumption is evaluated as the sum
of the front- and back-ends power consumption. The front-end
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Figure 6: Experiments under real noise: with 5 frequency
bands, the adaptive multi-band approach achieves comparable
performance as the 13 band fixed multi-band method.

is designed by Texas Instruments. It has a fixed power
consumption of 150µW going to the total energy thresholding
unit and the 13-band analog filter-bank and an additional power
cost of 10µW per active band for feature extraction. The
digital back-end is implemented on a Cortex-M0 processor.
The firmware implementation for the algorithm and data
consumes less than 40kB memory and under 10µW of power
per band. The total power consumption increases linearly with
the number of active sub-bands. For example, with adaptive
band-selection using an average of∼ 4 bands, the entire system
would consume ∼ 230µW when continuously triggered.

5. Conclusion and future work
In this paper, we presented a low power voice-command recog-
nition system equipped with adaptive feature selection and
multi-band DNN classification. Without degrading the recogni-
tion accuracy, the system offers simpler processing, improved
noise robustness and lower power consumption compared to
the conventional approach of using fixed features with fully-
connected DNNs. As a next step, more sophisticated in-band
SNR thresholding and band-selection procedures can be devel-
oped based on joint analysis of the speech spectrum and noise
properties in order to further improve the system robustness un-
der general noise.
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