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Abstract
In this paper, we build mono-lingual and cross-lingual emo-
tion recognition systems and report performance on English
and German databases. The emotion recognition system uses
biologically inspired auditory attention features together with
a neural network for learning the mapping between features
and emotion classes. We first build mono-lingual systems for
both Berlin Database of Emotional Speech (EMO-DB) and
LDC’s Emotional Prosody (Emo-Prosody) and achieve 82.7%
and 56.7% accuracy for five class emotion classification (neu-
tral, sad, angry, happy, and boredom) using leave-one-speaker-
out cross validation. When tested with cross-lingual systems,
the five-class emotion recognition accuracy drops to 55.1% and
41.4% accuracy for EMO-DB and Emo-Prosody, respectively.
Finally, we build a bilingual emotion recognition system and
report experimental results and their analysis. Bilingual system
performs close to the performance of individual mono-lingual
systems.
Index Terms: multilingual emotion recognition, auditory atten-
tion features, human-computer interaction.

1. Introduction
Emotion recognition is important for many applications in-
cluding call centers, virtual agents, video games, and human-
machine interfaces. For example, a game can dynamically adapt
to emotional state of the player; e.g., in a simplistic case, game
can become harder or easier based on player’s emotional state.
The performance of automatic speech recognition (ASR) sys-
tems degrade drastically for emotional speech and knowledge
of user’s emotion can be used to adapt ASR models or to select
appropriate pre-trained models dynamically to improve voice
recognition performance.

Automatically identifying the emotion of speaker from a
given utterance is a challenging task and it has gained more at-
tention in recent years due to wide range of applications. Major-
ity of work in this are has focused on either extracting relevant
features from speech that can represent emotions well or classi-
fication of emotions based on the extracted features. Tradition-
ally prosodic features such as pitch, duration and energy have
been used together with spectral features like mel frequency
cepstral features (MFCC), spectral centroid, etc. for emotion
recognition [1, 2, 3, 4, 5]. The most commonly used classifiers
for emotion recognition are Gaussian Mixture Models (GMM),
Hidden Markov Models (HMM), K Nearest Neighbors (KNN),
Decision Trees, Support Vector Machines (SVM), and Neural
Networks [5, 6, 7, 8, 1, 9].

In this paper, we focus on multilingual emotion recognition
inspired by findings of psychological studies on cross-cultural
emotion expression and detection. [10, 11, 12] argue that there

are ”basic” emotions such as happiness, anger, fear, and sad-
ness and they are universally expressed. [13] investigated cross-
cultural decoding accuracy between English and Japanese na-
tive speakers and found that there was little difference for de-
tecting emotions of non-sense speech spoken in his/her native
language or a foreign language. These studies imply that these
basic emotions may be expressed and recognized cross cultur-
ally or language-independently [14].

In the literature, emotion recognition has been largely ex-
plored; however multilingual emotion recognition hasn’t been
investigated much. [15] compared mono and multi lingual
emotion recognition and demonstrated that multilingual emo-
tion recognition using prosodic features can successfully be
applied to English, Slovenian, Spanish,and French acted emo-
tional speech recordings. [16] presented a statistical analysis of
prosodic features of multilingual emotional speech for Chinese,
English, Russian, Korean, and Japanese and confirmed basic
emotion states in multilingual speech can be recognized using
simple prosodic features. Recently, [17] reported an analysis of
features for building a bilingual emotion recognition for anger
detection on German and English data. In [18], we recently
demonstrated that a probabilistic linear discriminant analysis
(PLDA) model trained on German emotional speech data could
improve clustering of emotional speech data in English.

Aforementioned studies motivated us to work a step toward
multi-lingual emotion recognition in this paper. In our previ-
ous work, we proposed to use auditory attention (AA) features
for tone and pitch accent classification in English and Mandarin
and showed that auditory attention features outperformed the
traditional prosodic features for these tasks [19, 20]. Inspired
from that, in this study, we propose to use auditory attention
cues for emotion recognition for multiple languages. The au-
ditory attention model is biologically inspired and mimics the
processing stages in the human auditory system. A neural net-
work is used to learn the mapping between auditory attention
features and emotion classes. First, the effectiveness of audi-
tory attention features is demonstrated by building monolingual
emotion recognition systems for English and German on five
emotions; namely, neutral, angry, sad, happiness, and boredom.
Cross-lingual emotion recognition experiments are conducted
and demonstrated that there is commonness between the way
emotions are expressed and detected in German and English
emotional speech. Inspired from multi-style training in auto-
matic speech recognition systems, a multilingual emotion sys-
tem is built using German and English data together and showed
that it can perform as well as monolingual emotion systems do,
but with the benefit of having a single model.

The rest of the paper is organized as follows. The emotion
recognition system is described in Section 2. The auditory at-
tention model together with feature extraction is explained in
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Section 3, which is followed by experimental results in Section
4. The concluding remarks are presented in Section 5.

2. Emotion Recognition Method
It was shown in [21] and the references therein that speech
parameters have specific characteristics for certain emotions
around syllables; i.e. pitch contour suddenly glides up to a high
level within stressed level and then falls to lower level in last
syllable for surprise. Here, we used syllables as landmarks for
emotion recognition. To detect syllable boundaries automati-
cally, we used the syllable segmentation method in [22], which
uses auditory attention features as well.

A window that centers on a syllable is used in order to ex-
tract sound around it. Then, auditory attention features are ex-
tracted from these sound segments as explained in Section 3. A
three layer neural network (3-NN) is used to learn the mapping
between features and emotion classes. We use syllable-level au-
ditory attention features as input to the neural network, and the
output returns the class posterior probability p(ci|fi) for the ith

syllable. Here, fi is the auditory attention feature, ci is the emo-
tion class and takes values ciϵ{1, 2, ..., Nemo} , where Nemo is
the number of emotion classes. Then, the emotion tag for a
sentence, C∗, is estimated by computing average of posterior
scores over all syllables per sentence for each class and taking
the maximum as below:

C∗ = argmax
C

1

Nsyl

Nsyl∑
i=1

p(ci|fi). (1)

In Eq.(1), Nsyl represents the number of syllables per utterance.
Next, auditory attention features and how they are extracted is
explained.

3. Auditory Attention Model
The block diagram of the auditory attention model is shown in
Fig 1. As stated earlier, the model is biologically inspired and
hence mimics the processing stages in the human auditory sys-
tem. First, the auditory spectrum of the input sound is computed
based on early stages of the human auditory system. The early
auditory system model used here consists of cochlear filtering,
inner hair cell, and lateral inhibitory stages mimicking the pro-
cess from basilar membrane to the cochlear nucleus in the audi-
tory system [20]. The cochlear filtering is implemented using a
bank of 128 overlapping constant-Q asymmetric band-pass fil-
ters. For analysis, audio frames of 20 milliseconds (ms) with 10
ms shift are used, i.e. each 10 ms audio frame is represented by
a 128 dimensional vector.

Next, multi-scale features, which consist of intensity (I),
frequency contrast (F ), temporal contrast (T ), and orientation
(Oθ) with θ = {45o, 135o}, are extracted from the auditory
spectrum based on the processing stages in the central auditory
system [20, 23]. These features are extracted using 2D spectro-
temporal receptive filters mimicking the analysis stages in the
primary auditory cortex. Each of the receptive filters (RF) simu-
lated for feature extraction is illustrated with gray scaled images
in Fig 1 next to its corresponding feature. The excitation phase
and inhibition phase are shown with white and black color, re-
spectively. For example, the frequency contrast filter corre-
sponds to receptive fields in the primary auditory cortex with
an excitatory phase and simultaneous symmetric inhibitory side
bands. Each of these filters is capable of detecting and captur-
ing certain changes in signal characteristics. For example, the

Figure 1: Auditory Attention Model and Gist Extraction

orientation features are capable of detecting and capturing when
pitch is raising (orientation with 45o) or falling (orientation with
135o) [23]. Due to multi-scale structure of the model, auditory
attention features capture rich information and can successfully
recognize emotion from speaker’s voice without requiring ex-
plicit prosodic features.

The RF for generating frequency contrast, temporal con-
trast and orientation features are implemented using 2D Gabor
filters with angles 0o, 90o, {45o, 135o}, respectively. The RF
for intensity feature is implemented using a 2D Gaussian ker-
nel. The multi-scale features are obtained using a dyadic pyra-
mid: the input spectrum is filtered and decimated by a factor
of two, and this is repeated. Finally, eight scales are created
(if the scene duration is larger than 1.28 seconds (s); otherwise
there are fewer scales), yielding size reduction factors ranging
from 1:1 (scale 1) to 1:128 (scale 8). For details of the feature
extraction and filters, one may refer to [20, 23].

After multi-scale features are obtained, the model com-
putes “center-surround” differences by comparing “center” fine
scales with “surround” coarser scales yielding feature maps.
The center-surround operation mimics the properties of local
cortical inhibition and detects local temporal and spatial discon-
tinuities. It is simulated by across scale subtraction (⊖) between
a center scale c and a surround scale s yielding a feature map
M(c, s):

M(c, s) = |M(c)⊖M(s)|, Mϵ{I, F, T,Oθ} (2)

The across scale subtraction between two scales is computed by
interpolation to the finer scale and point-wise subtraction. Here,
c = {2, 3, 4}, s = c + δ with δϵ{3, 4} are used, which results
in 30 feature maps when there are eight scales.

Next, an “auditory gist” vector, also referred here as audi-
tory attention features, is extracted from the feature maps of I ,
F , T ,Oθ such that it covers the whole scene at low resolution.

3614



To do that, each feature map is divided into m-by-n grid of sub-
regions and mean of each sub-region is computed to capture the
overall properties of the map. For a feature map Mi with height
h and width w, the computation of feature can be written as:

Gk,l
i =

mn

wh

(k+1)w
n

−1∑
u= kw

n

(l+1)h
m

−1∑
v= lh

m

Mi(u, v), (3)

for k = {0, · · · , n − 1}, l = {0, · · · ,m − 1}. An example
of gist feature extraction with m = 4, n = 5 is shown in Fig
1, where a 4 × 5 = 20 dimensional vector is shown to rep-
resent a feature map. After extracting a gist vector from each
feature map, we obtain the cumulative gist vector by augment-
ing them. Then, principal component analysis (PCA) is used to
remove redundancy and to reduce the dimension to make ma-
chine learning more practical.

4. Experiments and Results
Berlin Database of Emotional Speech (EMO-DB) [24] and
LDC’s Emotional Prosody Speech Corpus [25] are used in
multi-lingual emotion recognition experiments. EMO-DB con-
tains emotional speech from 10 actors (5 female and 5 male)
reading 10 German utterances with 7 emotions: anger, bore-
dom, disgust, fear, joy, neutral, and sadness. The Emotional
Prosody (Emo-Pro) speech corpus includes English utterances
simulated by 7 professional actors1 by reading short dates and
numbers. In Emo-Pro, there are 15 emotion categories: disgust,
panic, anxiety, hot anger, cold anger, despair, sadness, elation,
happiness, interest, boredom, shame, pride, contempt, and neu-
tral and 2332 utterances in total. In this work, we focus on
and present emotion recognition experiments on five common
emotion classes: neutral (N), (hot) anger (A), happiness (H),
sadness (S), and boredom (B). Since we aim for a multi-lingual
and speaker independent system, all experiments are conducted
using leave-one-speaker out cross validation. This also provides
more fair baseline and comparison for cross-lingual results.

In all experiments, a 3-layer neural network is used for
learning the mapping between the auditory attention features
and emotion classes. The neural network has D inputs, M hid-
den nodes and N output nodes, where D is the length of audi-
tory attention feature after PCA dimension reduction when 90%
of the variance is retained, and N = 5 is the number of emotion
classes. Different grid and window sizes are tested for auditory
attention feature extraction, and it is found empirically that us-
ing a window of W = 1.0 s together with 16-by-10 grids is
sufficient and performs well in emotion recognition. Then, the
size of auditory attention features was computed as D = 240
using EMO-DB data. M is varied for each experiment and the
best performing one is mentioned in relevant places in following
sections. For Emo-Pro, we automatically found syllable bound-
aries using the method in [22], whereas syllable boundaries that
come along with the database are used in Emo-DB experiments.

First, we performed monolingual emotion recognition ex-
periments using EMO-DB and Emo-Pro database and results
are presented in Table 1. The number of hidden units are varied
from M = 31 to 248 as increments of ×2 and M = 62 and
M = 31 was the best performing networks for EMO-DB and
Emo-Pro, respectively. Then, the proposed method achieved
56.7% and 82.7% five class emotion recognition accuracy for
Emo-Pro and Emo-DB, respectively.

1There are eight speakers in Emotional Prosody database but one
speaker has only neutral emotion speech; hence it was discarded.

Table 1: Monolingual Emotion Recognition Results

Database Accuracy
EMO-DB 82.7
EMO-Pro 56.7

Table 2: Cross-Lingual Emotion Recognition Results
Database Accuracy
EMO-DB 55.1
EMO-Pro 41.4

Table 3: Bilingual Emotion Recognition Results
Database Accuracy
EMO-DB 78.6
EMO-Pro 54.7

We can compare our results on Emo-Pro with previously
published state-of-the-art emotion classification results on the
same five class emotion recognition task in [14, 2]. [2] achieved
48.5% accuracy using prosodic and spectral features with a
GMM based classifier and improved the performance to 59.5%
accuracy by applying speaker normalization. [14] achieved
53% accuracy with pitch, energy, zero crossing features with
an HMM for emotion recognition. In summary, emotion recog-
nition results on Emo-Pro presented in this paper compare well
and outperform [2] and [14] when no speaker info is available,
which demonstrates effectiveness of auditory attention features
in emotion recognition task. We cannot compare our results
on EMO-DB to prior work, since usually all seven classes in
EMO-DB are used in previously reported results.

The confusion matrix for monolingual emotion recognition
on English Emo-Pro is presented in Table 4. Note that in all ta-
bles, N, A, H, S, and B are used to denote neutral, anger, happi-
ness, sadness, and boredom, respectively. Emotion that has the
highest accuracy is anger with 74.8% accuracy. Emotion that
has the lowest accuracy is sadness with 38.2% accuracy and it
is mostly confused with boredom. The emotion that is confused
the most is happiness, and it is with anger (with 30.5% rate),
which is a well known paradigm in emotion recognition.

The confusion matrix for monolingual emotion recognition
on German Emo-DB is presented in Table 5. Emotion that
has the highest accuracy is anger and sadness with 96.8% and
96.7% accuracy, followed by neutral with more than 90% ac-
curacy. Emotion that has the lowest accuracy is happiness with
39.4% accuracy and it is mostly confused with anger. As in En-
glish, the emotion that is confused the most is happiness and it
is confused with anger (with 54.9% rate).

Second, cross-lingual emotion recognition experiments us-
ing mismatched language data are conducted and results are
presented in Table 2. Here, the neural network emotion model
trained on German Emo-DB is used for English Emotion recog-
nition, and vice versa. With cross-lingual models, 41.4% and
55.1% emotion recognition accuracy is achieved for Emo-Pro
and Emo-DB, respectively. As expected, due to mismatched
language data, there is 15.3% and 27.6% degradation in Emo-
Pro and Emo-DB, respectively, however these numbers are well
above chance level2 for these databases.

2Chance level is 25% and 30% for Emo-Pro and Emo-DB, respec-
tively, based on the data distribution.
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Table 4: Confusion Matrix for Monolingual Emotion Recogni-
tion in Emotional Prosody

A H S N B
A 74.8 18.0 4.3 2.2 0.7
H 30.5 45.8 6.8 10.2 0.10
S 11.8 15.1 38.2 9.9 25.0
N 1.3 6.3 16.5 49.4 26.6
B 3.3 11.0 14.3 2.6 68.8

Table 5: Confusion Matrix for Monolingual Emotion Recogni-
tion in EMO-DB

A H S N B
A 96.8 3.17 0 0 0
H 54.9 39.4 0 5.6 0
S 0 0 96.7 1.6 1.6
N 0 1.3 3.8 91.1 3.8
B 2.5 3.7 8.6 6.2 79.0

Table 6: Cross-Lingual: Confusion Matrix for five emotions in
Emotional Prosody using Emo-DB German models

A H S N B
A 74.1 23.7 0.7 0.7 0.7
H 46.3 29.9 3.4 11.3 9.0
S 13.2 17.8 32.2 6.6 30.3
N 2.5 12.7 32.9 12.7 39.2
B 9.7 12.3 20.8 8.4 48.7

Table 7: Cross-Lingual: Confusion Matrix for five emotions in
EMO-DB using Emo-Pro English models

A H S N B
A 64.6 35.4 0 0 0
H 23.3 68.5 4.1 1.4 2.7
S 0 0 81.0 1.7 17.2
N 0 14.3 28.6 13 44.2
B 0 6.5 42.9 1.3 49.4

Also, confusion matrices for cross-lingual models are pro-
vided in Table 6 and 7. We see similar trends to monolingual
models. For example, anger is the most accurately detected
emotion in English and most of the classes are recognized well;
i.e. boredom with 48.7%, sadness with 32.2% accuracy. How-
ever, it seems like English neutral speech was the most diffi-
cult class to recognize when German model is used and it was
mostly confused with first boredom, next with sadness in Ger-
man. Again by looking at the cross-lingual Emo-DB results in
Table 7, as with monolingual German model, sadness was the
most accurately detected class and least effected one from mis-
matched language. Most of the emotion classes are detected
well in Emo-DB as well; except that German neutral speech
was difficult to detect with English emotion models and it was
mostly confused with boredom in English. From these experi-
mental results, one may infer that there is commonness between
the way emotions are expressed and detected in German and
English emotional speech.

Finally, we built bilingual emotion models using both Ger-
man Emo-DB and English Emo-Pro database and results are
presented in Table 3. The number of hidden units are varied

Table 8: Bilingual Model: confusion Matrix for five emotions
in EMO-DB and Emotional Prosody

EMO-PRO

A H S N B
A 76.3 19.4 2.2 0.7 1.4
H 32.2 43.5 2.8 10.2 11.3
S 11.8 16.5 38.8 10.5 22.4
N 0 8.9 13.9 45.6 31.7
B 4.6 8.4 14.9 6.5 65.6

EMO-DB

A H S N B
A 91.3 8.7 0 0 0
H 45.1 52.1 0 2.8 0
S 0 0 90.3 4.8 4.8
N 0 2.5 2.5 82.3 12.7
B 1.2 1.2 9.9 18.5 69.1

from M = 31 to 248 as increments of ×2, and M = 124
was the best performing network. With bilingual model, 54.7%
and 78.6% emotion recognition accuracy is achieved for Emo-
Pro and Emo-DB, respectively. It can be concluded that bilin-
gual emotion model performs well and catches the performance
of monolingual emotion models without requiring having two
separate models. Even though, the model size is approximately
doubled with M = 124, we can still achieve 50.4% and 74.1%
with M = 62 if one wants to have a smaller model, which is
approximately equal to a monolingual model size.

The confusion matrices for Emo-DB and Emo-Pro when
bilingual model is used are provided in Table 8. It can be
observed that the confusion matrix for each database/language
looks similar to the one obtained with monolingual models. For
example, anger is the most accurately detected emotion in En-
glish with 76.3% accuracy and anger and sadness are the most
accurately detected classes in German with more than 90% ac-
curacy. Again, the emotion that is confused the most is happi-
ness and it is confused with anger both in English and German.

5. Conclusion and Future Work
In this paper, we presented a novel emotion recognition ap-
proach using auditory attention features and demonstrated
its effectiveness via five class emotion recognition experi-
ments with German Emo-DB and English Emotional prosody
databases, and compared with previously reported results. The
main focus of the paper has been multilingual emotion recogni-
tion. We conducted experiments on both German and English
emotional databases by building mono-lingual, cross-lingual,
and bilingual emotion models. Cross-lingual experiments have
shown that there is a commonness between the way emotions
are demonstrated and detected in English and German. Also,
bilingual emotion model built using both German and English
data could perform similar to individual monolingual emotion
models.

As part of future work, we would like to include more data
from varying languages especially consider tonal languages
such as Mandarin to see the effect of tone on multilingual emo-
tion recognition. Also, including facial features can greatly
help to achieve a unified multilingual system that performs well
across languages and emotions.
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