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Abstract
To which extent can neural nets learn traditional signal process-
ing stages of current robust ASR front-ends? Will neural nets
replace the classical, often auditory-inspired feature extraction
in the near future? To answer these questions, a DNN-based
ASR system was trained and tested on the Aurora4 robust ASR
task using various (intermediate) processing stages. Addition-
ally, the training set was divided into several fractions to reveal
the amount of data needed to account for a missing processing
step on the input signal or prior knowledge about the auditory
system. The DNN system was able to learn from ordinary spec-
trograms representations outperforming MFCC using 75% of
the training set and almost as good as log-Mel-spectrograms
with the full set; on the other hand, it was unable to compensate
the robustness of auditory-based Gabor features, which even
using 40% of the training data outperformed every other rep-
resentation. The study concludes that even with deep learning
approaches, current ASR systems still benefit from a suitable
feature extraction.
Index Terms: automatic speech recognition, deep neural net-
works, resource constrained training, robust front-ends

1. Introduction
Recently, neural nets saw their (second) renaissance as state-of-
the-art recognizers and are now ubiquitous in automatic speech
recognition (ASR) systems. As they are capable of learning
high-dimensional non-linear functions [1, 2], they have par-
tially, if not completely, taken over the feature extraction mod-
ule, blurring the line between front-end and back-end. Hence,
it is a legitimate question if traditional (robust) ASR front-ends
which implement, to some extent, prior knowledge about the
human auditory system, will be replaced by neural nets.

Ever since their introduction Mel-frequency cepstral co-
efficients (MFCC) have been broadly used in ASR systems,
owing to their few dimensions and relatively easy procedure
[3]. Lately, however, more primitive representations have been
adopted mainly as a consequence of the implementation of deep
neural networks (DNN); for instance logarithmic scaled Mel-
spectrogram from which MFCC are extracted, dubbed as Mel-
frequency spectral coefficients (MFSC).

There have been various studies approaching this subject
from a different view [4, 5, 6, 7], searching for models trained
on simpler features to outperform the MFSC and/or their vari-
ants, going even to the point of training acoustic models with
raw discrete signals. In [8], using a combination of convolu-
tional, recurrent and fully connected neural networks this en-
deavor was finally achieved.

On the other hand, this last model was trained with over
2000 hours of speech material. A crucial prerequisite for train-
ing neural nets is the availability of sufficient training data as

performance directly depends on it; hence, reliable labeled data
may be one of the most valuable resources.

If there were common fundamental principles of signal pro-
cessing for robust speech recognition and we knew how to im-
plement them, it would probably be more beneficial to use the
available training data to learn unknown signal properties in-
stead of known signal processing principles. Learning static
components or —”re-inventing the wheel”— every single time
an ASR system is trained could be a waste of valuable training
resources, if an adequate implementation of these components
existed.

In this study we assessed whether a current robust front-
end together with a DNN-based recognizer could be such an
adequate implementation or if it can be replaced by preced-
ing processing stages. On a widely available robust ASR task,
namely the Aurora 4 framework, the amount of training data
was systematically varied from 10% to 100%, which approxi-
mately corresponds to 1.5 to 15 hours, respectively.

The robust front-end proposed in [9] used a Gabor filter
bank (GBFB [10]) of auditory-inspired spectro-temporal mod-
ulation filters to extract spectro-temporal patterns and was re-
ported to outperform several current robust ASR front-ends.

It implements basic human auditory signal processing prin-
ciples, such as the sound intensity compression and the pitch
perception of pure tones, in addition, it encodes spectro-
temporal changes in the signal using a filter bank of modulation
filters which were inspired from physiological measurements in
mammals [11, 12].

If representations as such are suitable for robust ASR, their
use could prevent the ASR system from learning common signal
processing principles and allow to ”invest” the training data in
learning the unknown signal properties; which, in turn, should
result in increased recognition performance or allow to achieve
the same performance with less training data. Conversely, if
a stage of the fixed signal processing is sub-optimal for robust
ASR, the recognition performance should decrease over using
the preceding stage.

To assess to which extent the neural nets can learn or even
improve missing stages of the feature extraction using a DNN-
based ASR system, several intermediate stages of two front-
ends were considered: The traditionally used MFCC features
and robust auditory-inspired Gabor filter bank features. Both
share the same intermediate stage, the logarithmic-scaled Mel-
spectrogram, which, in turn, is calculated from an ordinary am-
plitude spectrogram, these four processing steps were consid-
ered as features to train individual models.

,
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2. Methods
2.1. Recognition experiments

Experiments were performed on the large vocabulary continu-
ous speech recognition Aurora 4 framework [13], derived from
the LDC Wall Street Journal Corpus. The multicondition train
set consists of 7137 utterances from 83 independent speakers
(~15hrs.); half of them were recorded using a close-talk micro-
phone and the other half a secondary microphone to introduce
some channel distortions; each half was further divided in 7
groups leaving the first one unprocessed and on the remaining 6,
an individual additive noise was introduced (car, babble, restau-
rant, street, airport and train) at random signal-to-noise-ratios
from (10 - 20 dB). The 5000-word-vocabulary test set includes
330 utterances from 8 independent speakers; each utterance was
processed following the 14 aforementioned conditions (except
the SNR levels of the additive noise ranged 5 - 15 dB) resulting
into 4620 utterances.

2.2. Robust front-end

In this section we describe the features as a series of process-
ing steps. Starting with the amplitude spectrogram (Raw-Spec)
obtained by applying a 512 point FFT to the frame segmented
(25 ms length and 10 ms shift) discrete signal and keeping the
absolute values of the first 257 coefficients. In the second step,
a Mel-spectrogram (Mel-spec) is calculated by combining the
257 frequency bins into 31 equidistant Mel-bands using trian-
gular filters. This filtering mimics auditory signal processing
principle in that it limits the spectral resolution and represents
frequencies similar to their distribution on the human basilar
membrane. The third step is to apply a logarithmic compres-
sion to the amplitude values encoded in the Mel-spectrogram
to obtain a log-Mel-spectrogram, which mimics to some extent
the compression of sound intensity in human auditory percep-
tion. These Mel-frequency spectral coefficients (MFSC) are the
precursors of the last two diverging processing steps we com-
pared: MFCC (plus deltas and double deltas) and Gabor filter-
bank (GBFB) features.

Gabor features derive from the convolution between the
MFSC and a set of 2-dimensional Gabor filters introduced by
[10]. A Gabor filter is the product of a complex sinusoid func-
tion (1) and a Hann window (2). The periodicity of the carrier
sinusoid was defined by the radian frequencies ωn and ωk (n
and k denoting time and frequency index, respectively), in this
study we kept the temporal modulation frequency fixed at 25Hz
(referred to as high temporal modulation or HTM) to limit the
temporal context to +−3 frames while varying ωk from −0.25
to +0.25 cycles/channel, allowing the Gabor filters to be tuned
to particular spectro-temporal directions. These Gabor features
are dubbed GBFB-HTM.
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Because the output of the filtering process with filters of
low spectral modulation frequencies and hence large spectral
extent (69 channels height for ωk = 0) is highly redundant in
the spectral dimension, it is critically sampled in the spectral di-
mension to reduce redundancy of the feature dimensions. This
step is explained in detail in [10].

2.3. DNN Recognizer

The deep neural network (DNN) was based on the one described
in [14]. Recognition experiments were conducted using the
Kaldi ASR toolkit [15]. Due to the size restrictions we imposed
on the train set, we pretrained the acoustic models using a stack
of Restricted Boltzmann Machines [16], also known as deep be-
lief network (DBN), as it provides a substantial improvement on
low resource training data over random initialization [17].

The 7-layers DBN served as a backbone for the final net-
work, it was later fine-tuned using back-propagation via SGD
to classify frames into triphone-states using an independent (de-
velopment) set and the cross entropy between the network out-
put and the labels as a cost function. A regular GMM triphone
system was trained in order to obtain those labels via forced
alignment.

The training was done in up to 20 epochs (stopping when
the relative improvement was lower than 0.001). The starting
learning rate was 0.008 (halving it every time the relative im-
provement was lower than 0.01) and no momentum nor regular-
ization techniques were applied. Each of the six hidden layers
in the resulting DNN has 2048 sigmoid neurons.

To provide temporal context several frames were concate-
nated and parsed to the input layer, +−1 frames for GBFB-HTM
and +−5 frames for the remaining features. A soft-max layer of
approximately 2000 units was attached to the end of the DNN
to output the most likely posterior probabilities of each context-
dependent HMM state.

2.4. Training data limitation

To keep track of the amount of data needed for each model to
account for missing processing steps, the train set was divided
first in halves and quarters, then percentagewise to add addi-
tional values in between; producing the following steps: 10%,
25%, 40%, 50%, 60%, 75%, 90% and 100%. Every percentual
portion includes all 83 speakers and a distributed randomized
selection of utterances per speaker, to ensure there was a bal-
anced number of examples per target class (i.e. triphones) for
each condition; however, every minor portion was a subset of
a bigger one. The random selection was performed 10 times
to get a margin of error on every percentage step. The test set
remained the same for every model.

3. Results
The word error rates (WERs) on the Aurora 4 task depending on
the employed front-end and available training data are plotted in
Figure 1 and reported in numerical form in Table 1.

The WERs of all systems increased monotonically as the
available training data was decreased. As expected, the effect
was more pronounced when fewer samples were available, e.g.
from 25% to 10%. Below 10% no reliable training of the system
was possible anymore.

By limiting the training data to 10% the WERs almost dou-
bled compared to models taking advantage of the whole training
data set, regardless of the front-end. Independent of the amount
of training data, using the GBFB-HTM features resulted in 4-6
percentage points lower WERs than the lowest achieved WERs
with the other front-ends, outperforming these by far. Hence,
the best performance, i.e., the lowest WER of (10.05+−0.05)%,
was achieved when using GBFB-HTM features and the whole
training data set.

Surprisingly, using the traditional signal representation of-
fered by the MFCC did not result in second lowest WERs. With
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Table 1: Word error rates in % depending on the available training data and front-end on the Aurora 4 task along with the uncertainty
due to the selected portion of the training data and initial values for the DNN estimated from 10 runs. 100% training data corresponds
to about 15 hours of speech recordings.

Front-end 10% 25% 40% 50% 60% 75% 90% 100%

1) Raw-Spec 27.40 +−0.29 21.38 +−0.10 19.35 +−0.05 17.61 +−0.19 16.71 +−0.08 15.42 +−0.09 14.86 +−0.11 14.13 +−0.06

2) Mel-Spec 30.50 +−0.37 21.00 +−0.24 19.36 +−0.13 18.58 +−0.15 16.61 +−0.12 16.34 +−0.24 15.60 +−0.12 14.97 +−0.20

3) MFSC 25.49 +−0.27 21.61 +−0.09 17.27 +−0.09 16.90 +−0.05 15.16 +−0.07 14.26 +−0.08 13.82 +−0.10 13.58 +−0.16

4a) MFCC 26.32 +−0.13 20.58 +−0.15 18.46 +−0.16 17.65 +−0.21 16.23 +−0.21 15.93 +−0.16 15.73 +−0.25 14.94 +−0.15

4b) GBFB-HTM 19.84 +−0.27 14.20 +−0.06 12.86 +−0.05 12.26 +−0.06 11.56 +−0.05 10.95 +−0.05 10.34 +−0.06 10.10 +−0.05

the exception of when training on 25% of the training data,
where all non-GBFB front-ends performed similarly (±1 per-
centage point), using the MFSC as the front-end resulted in the
second lowest WER.

While the extraction of GBFB-HTM features from the
MFSC greatly reduced the WERs, the extraction of MFCC from
the very same representations even increased the WERs (with a
small exception when training on 25% of the training data).

Neither preceding processing stages of the MFSC, i.e., the
Mel-spectrogram nor the raw amplitude spectrogram, achieved
WERs as low with the MFSC themselves, when 40% or more
of the training data are used.

Using the raw amplitude spectrogram tended to result
in slightly lower WERs compared to when using the Mel-
spectrogram. When using 75% or more of the training data,
it even outperformed MFCC with the respective WERs being
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Figure 1: Word error rates in % depending on the available
training data and front-end on the Aurora 4 task. The common
intermediate processing stage of 4a) MFCC and 4b) GBFB-
HTM features is 3) a logarithmic scaled Mel-spectrogram which
conforms the MFSC and in turn are calculated by compress-
ing the amplitude values of 2) a Mel-spectrogram (Mel-Spec)
which, in turn, is derived from 1) an amplitude spectrogram
(Raw-Spec) by spectral integration.

about 0.8 percentage points lower.

The system with GBFB-HTM features trained on only 25%
of the training data outperformed the system using MFCC fea-
tures trained on the full training data set and with only 40% of
the training data, it also outperformed any other system using
an intermediate signal representation trained even on the full
training data set.

Unlike representations obtained from MFCC or their inter-
mediate processing steps, the ones trained from GBFB-HTM
yielded steadily decreasing WER when adding more training
data.

Furthermore, the uncertainty due to the used portion of the
training data and the initialization of the parameters of the neu-
ral net as reported in Table 1 when using GBFB-HTM feature
was comparatively low, except when using only 10% of the
training data.

4. Discussion
As shown in our previous study [9] the robust GBFB-HTM font-
end could not be omitted without important increases in WERs
in a DNN-based ASR system performing a current ASR task.
The results in this study, suggest a robust front-end, here in
the form of GBFB-HTM features, still provides an important
advantage compared to learning feature representations from
intermediate signal representations even when restricting the
amount of available training data.

Compared to their shared intermediate representation—the
MFSC— the auditory-inspired GBFB-HTM features aided the
ASR system in performing the task while the traditionally used
MFCC even harmed the recognition performance. This indi-
cates, that the signal representation by MFCC was sub-optimal
for this robust ASR task, because the DNN could learn a more
suitable representation from the MFSC, or even from the raw
amplitude spectrogram.

In contrast, the signal representation learned using GBFB-
HTM features was the most suitable for robust ASR because the
DNN could not learn a more suitable representation from nei-
ther the MFSC, nor any preceding intermediate representation.

The extraction of spectro-temporal patterns from MFSC
could be remarked as a more efficient usage of the available
training data based on the consistent WER decrease. Compared
to the MFSC, the direct encoding of spectro-temporal patterns
could save more than half of the training data and would still
achieve lower WERs ((12.26± 0.06) vs. (13.58± 0.16)).

The GBFB-HTM front-end is the one that implements the
most (prior) knowledge about the auditory system, namely,
in addition to the processing of MFSC, it considers spectro-
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temporal modulation patterns. This extra information might ex-
plain the gap between processing steps.

The human auditory system is known to show superior
speech recognition performance under the most adverse acous-
tic conditions and it could well be, that a set of common sig-
nal processing principles exists which is near-optimal for robust
speech recognition (and potentially many other tasks). The re-
sults in this study suggest that such a representation might exist
and it might reassemble more GBFB-HTM features than MFCC
features.

The inclusion of even more training data (more than 100%)
could result in further improvements for any of the ASR sys-
tems, but the results give no hint about the lowest achievable
WER given additional training data. Hence, there is no point
in speculating about the best front-end if (much) more train-
ing data was available. Moreover, the performance would most
probably depend on the type of additional training data, such as,
more speakers, more vocabulary, more noise conditions, etc . . .

The availability of more comprehensive training data sets
could possibly help to find signal representations which are even
better suited for (robust) ASR.

In theory, one could expect an improvement in performance
with every adequately implemented bit of the hypothesized
common signal processing principles, however, it was not the
case for the studied processing chain. Compared to 1) the raw
spectrogram, using 2) the Mel-spectrogram as the front-end of-
ten resulted in higher WERs, which indicates this processing
step might not be adequately implemented and could be possi-
bly improved. Potential alternatives can be found in many dif-
ferent models of human auditory signal processing, e.g., [18].

We hypothesize that, as long as the limited availability of
training data is a concern, robust front-end will remain an im-
portant part of robust ASR systems, because they alleviate the
demand for training data by providing prior knowledge about a
suitable signal representation.

Neural nets are an interesting and powerful tool to assess
the benefit of specific processing stages by reducing the avail-
able training data.

4.1. Future work

The proposed method can be used to examine and reconsider
the signal processing stages of current robust ASR front-ends.
Certainly, neural nets should be used to evaluate the benefit and
reconsider the indispensability of certain signal processing prin-
ciples (for robust ASR).

It might even be helpful to build new robust front-end from
scratch by evaluating the most suitable options step-by-step.
Therefore, it could be worthwhile to study the interaction of
front-ends and training data if much more, and more compre-
hensive, training data become available. It should be tested if
the findings of this study translate to other robust ASR tasks and
other languages in which finding suitable labeled data might be
a major shortcoming for using modern recognizers.

5. Conclusions
The most important findings of this work can be summarized as
follows:

• Among the considered front-ends, the most robust
one was found to be the one that implemented the
most auditory-inspired signal processing principles: The
Gabor filter bank (GBFB)-based features which en-
code complex spectro-temporal patterns outperformed

all other front-ends even with as much as 60% less train-
ing data available.

• Current ASR systems with complex deep learning ar-
chitectures and training methods will probably benefit
from robust features, or implementing a-priori knowl-
edge about suitable signal processing, in challenging
acoustic scenes, because the available training data can
be more efficiently used to learn unknown signal proper-
ties instead of known (auditory) signal processing prin-
ciples.

• Neural nets can be used as a tool to test if a given front-
end, i.e., a fixed signal representation, is suitable for a
given task, and if so, to estimate the equivalent of train-
ing data the implementation of prior knowledge saved.
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