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Abstract
Amyotrophic lateral sclerosis (ALS) is a rapid neurodegenera-
tive disease that affects the speech motor functions of patients,
thus causes dysarthria. There is no definite marker for the di-
agnosis of ALS. Currently, the diagnosis of ALS is primar-
ily based on clinical observations of upper and lower motor
neuron damage in the absence of other causes, which is time-
consuming, of high cost, and often delayed. Timely diagno-
sis and assessment for ALS are crucial. Automatic detection
of ALS from speech samples would advance the diagnosis of
ALS. In this paper, we investigated the automatic detection of
ALS from short, pre-symptom speech acoustic and articulatory
samples using machine learning approaches (support vector ma-
chine and deep neural network). A data set of more than 2,500
speech samples collected from eleven patients with ALS and
eleven healthy speakers was used. Leave-subjects-out cross val-
idation experimental results indicate the feasibility of the auto-
matic detection of ALS from speech samples. Adding articu-
latory motion information (from tongue and lips) further im-
proved the detection performance.
Index Terms: amyotrophic lateral sclerosis, human-computer
interaction, computational paralinguistics

1. Introduction
Amyotrophic lateral sclerosis (ALS), also referred to as Lou
Gehrig’s disease, is the most common motor neuron disease
that causes degeneration of both upper and lower motor neu-
rons [1]. There is no cure for ALS. ALS affects between 1.2
and 1.8 /100,000 individuals and the incidence is increasing at a
rate that cannot be accounted for by population aging alone [2].
The diagnosis of ALS is provisional, based primarily on clin-
ical observations of upper and lower motor neuron damage in
the absence of other causes [3]. Because the clinicopathologic
markers of ALS are poorly defined, patients are often misdiag-
nosed (up to 45% of the time) or delayed for up to 12 months
[4]. One unfortunate consequence of this delay is that by the
time of diagnosis, a patient’s motor neurons may have been af-
fected. The diagnosis and treatment of ALS will be significantly
strengthened when objective, sensitive markers for the disease
can be identified [5].

ALS causes dysarthric speech [6]. Speech production de-
cline is among the earliest indicators of bulbar motor involve-
ment due to ALS [7, 8]. Most of the currently used clinical
measures are subjective. ALS Functional Rating Scale- Revised
(ALSFRS-R) is currently used for monitoring the progression

of disability in patients with ALS, which includes self-reported
questions on speech, swallowing, feeding and other body mo-
tion measures [9]. Speech intelligibility (percentage of words
that are understood by listeners who are not familiar with the pa-
tients) and speaking rate (number of spoken words per minute,
W/M) are other commonly used clinical measures for speech
performance [10].

Recent studies have tried to detect bulbar ALS through
comprehensive physiological measures, including articulatory,
phonatory, respiratory, and laryngeal sub-systems [11, 12]. Al-
though the results are promising, the logistical difficulty of data
collection (particularly tongue motion data) prevents these ap-
proaches from being practically used. In contrast, speech sig-
nals can be collected conveniently in a clinical environment or
at home (e.g., through a smart phone). Therefore, speech sig-
nals may be a promising source of information for the automatic
detection of ALS in practical applications.

The feasibility of the automatic detection of neurological
diseases from speech signals have been recently demonstrated,
for example, for depression [13, 14], traumatic brain injury
[15], and Parkinson’s disease detection or severity estimation
[16, 17]. Acoustic feature analysis (e.g., formant centraliza-
tion ratio [18], vowel space area [18], intonation and prosody
[19]) showed promising results in the detection of neurological
diseases. Hahm and colleagues used quasi-articulatory features
that were inversely mapped from acoustic data and showed an
improvement for Parkinson’s condition estimation [20]. As a
motor neuron disease, ALS affects the articulatory patterns, in-
cluding tongue and lip motion [8]. Thus, articulatory motion
information may also provide complementary information that
would benefit ALS detection.

To our knowledge, this project is the first that aimed to
automatic detection for ALS from speech acoustic and artic-
ulatory samples. Speech samples are pseudo words or short
phrases that are spoken in daily life (e.g., how are you?). Two
commonly used machine learning classifiers, support vector
machine (SVM) and deep neural network (DNN), were used.
Leave-subjects-out cross validation strategy was used in the ex-
perimental design, where training data and testing data were
from unique talkers.

2. Data Collection
2.1. Participants

Eleven patients with ALS and eleven healthy talkers partici-
pated in the data collection. All participants were asked to
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Table 1: Patient information.

Subject
ID Gender Age

Speech
Intelligibility

(%)

Speaking
Rate

(W/M)

A01 M 50 100 237
A02 F 62 89 78
A03 F 40 99 135
A04 M 74 97 85
A05 M 69 100 200
A06 M 77 96 177
A07 F 54 96 137
A08 F 72 80 148
A09 M 62 98 172
A10 F 63 94 105
A11 M 44 90 109

Average 60 95 144
SD 12.3 3.9 52.3

repeat a list of sentences (e.g., how are you doing?) or eight
isolated vowels in /bVb/ form (i.e., /bab/, /bib/, /beb/, /b@b/,
/bˆb/, /bcb/, /bob/, /bub/) multiple times. The acoustic output
was recorded synchronously.

The speech intelligibility and speaking rate of these patients
were evaluated by a certified speech-language pathologist us-
ing the Sentence Intelligibility Test (SIT) software [21]. The
speech intelligibility scores in Table 1 show that patients were
pre-symptom and had normal speech.

2.2. Setup and Procedure

Two electromagnetic articulographs (NDI Wave and Carstens
EMA AG500) were used for collecting speech acoustic and ar-
ticulatory movement data. The two articulographs are based on
the same electromagnetic technology by tracking small wired
sensors that are attached to the subject’s tongue, lips, and head
[22]. Thus, we just described the procedure of using Wave in
this paper. The two devices have a similar tracking accuracy
(0.5 mm) [23, 24].

Four sensors were attached to tongue and lips. The sensors
were tongue tip (TT, 5-10 mm to tongue apex), tongue back
(TB, 20-30mm back from TT), upper lip (UL, vermilion border
of the upper lip at midline), and lower lip (LL, vermilion bor-
der of the lower lip at midline). Previous studies indicated that
the four-sensor set is optimal for this application (e.g., [25]).
Hence, data from these sensors were used in analysis. Mean-
while, an additional sensor was attached to the middle point
of the forehead. The head sensor data were used for calculat-
ing head-independent data of other sensors. The positions of
the five sensors attached to a participant’s head, tongue and lips
were illustrated in Figure 1.

Invalid samples were rare and excluded from the analysis.
A total of 2,567 valid samples were collected with each sample
containing both acoustic and articulatory information. 1,832
of the samples were from healthy speakers; 735 samples were
from patients with ALS. ALS patients produced less number of
samples than healthy talkers, because some patients with ALS
did not complete the whole task.

Figure 1: Sensor locations in data collection. Labels are de-
scribed in text.

3. Method
The major design of ALS detection involved two major steps:
feature preparation and classification. Feature preparation was
to extract and select a set of content-independent acoustic and
articulatory features and speaker characteristics from speech
and articulatory samples. Classification was to distinguish if
a sample is from a healthy or ALS speaker.

3.1. Feature extraction

The script provided in [26] was modified (70 ms window size
and 35 ms frame shift) and used to extract acoustic and articula-
tory features from acoustic and articulatory motion data respec-
tively. The script extracted 6,373 pre-defined acoustic features
including these with jitter, shimmer, and MFCC. However, low
frequency articulatory movement data do not contain all these
features. Thus, we disabled the following feature groups when
using the tool to extract articulatory features:

Jitter, Shimmer, logHNR, Rfilt, Rasta, MFCC, Harmonicity,
and Spectral Rolloff.

In each feature group, individual features were calculated,
for example, mean, flatness, posamean, rqmean, range, maxPos,
minPos, centroid, stddev, skewness, kurtosis, etc. Please refer
to [26] for a detailed description of these features.

Therefore, for each dimension (x, y, or z) of a sensor, 1,200
features were extracted. In total, 20,733 features (6,373 acoustic
feature + 3,600 articulatory features × 4 sensors (Tongue Tip,
Tongue Body Back, Upper Lip, and Lower Lip) were used to
test our ALS detection approaches. In addition, the articulatory
features from tongue and lips were used individually to advance
the understanding of individual contribution of each articulator
to distinguishing ALS from healthy speakers.

3.2. Feature selection using randomized logistic regression

Feature selection is crucial for high dimensional classification
tasks, like that in this project. We used Randomized Logistic
Regression (RLR) as the feature selection procedure [27]. RLR
is a stability selection technique where any specified selection
algorithm can be applied along with subsampling [27]. RLR
uses logistic regression as the selection algorithm. Logistic re-
gression classifier assumes a parametric form for the distribu-
tion P (Y |X) and the model can be defined as:

P (Y = 1|X) =
1

1 + exp(wo +
∑n

i=1 wiXi)
(1)
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where Y is the boolean class vector, X =< X1, X2, ...Xn >
is any discrete or continuous valued data vector and W =<
w0, w1, ...wn > is the weight vector to be learned from the
training data. The implementation of RLR in [28] was used in
this project.

Examples of the selected acoustic features are the first quar-
tile of MFCC, the arithmetic means of the F0 contour, and the
first quartile of the F0 contour. The selected articulatory fea-
tures included the first quartile of FFT magnitude and the mini-
mum range relative to the segment length of FFT magnitude.

3.3. Speaker normalization using i-Vectors

I-vectors are a widely used technique for speaker verification,
which maps speaker-related information to low-dimensional
fixed-length vectors [29]. In this paper, i-vectors were used to
reduce the undesired speaker variability that may lower the per-
formance.

I-vector algorithm assumes a linear dependence between
the speaker-adapted information and the speaker-independent
information, which can be modeled as equation:

s = m+ Tw (2)

where m is the mean supervector of Gaussian mixture model
(GMM) representing universal background model (UBM). T is
also referred to as the i-vector extractor that is a low-rank matrix
representing subspace containing important variability in the
mean supervector space [29], and w is a standard normal dis-
tributed vector. The UBM used in this stage was represented as
a diagonal covariance Gaussian mixture model (GMM), which
was trained using EM algorithm based on data from other
speakers [29].

The concatenation of i-vectors and the selected RLR fea-
tures was used for classification.

3.4. Support Vector Machine

Support Vector Machine (SVM) is a classification technique
that produces a separating line with the maximum margin from
the nearest data points belonging to either class [30]. SVM
solves a quadratic optimization problem that maximizes the
distance between the separating hyperplanes passing through
points belonging to each class and the data points on the bound-
ary and, in the meanwhile, satisfying the class membership re-
quirement of the points [31]. A kernel function is used to de-
scribe the distance between two samples (i.e., r and s in Equa-
tion 3). The following radial basis function (RBF) was used as
the kernel function KRBF in this study, where γ is an empiri-
cal parameter (γ = 1/n, by default, where n is the number of
features) [22]:

KRBF (r, s) = exp(1− γ||r − s||). (3)

Please refer to [31] for more details about the implementa-
tion of the SVM. All feature values were normalized by groups
(ALS and Healthy) using z-score before they were fed into
SVM.

3.5. Deep Neural Network

Deep neural networks (DNN) have recently been used in pattern
recognition and speech recognition successfully [32]. DNN is
a multiple-layer neural network with each layer having multi-
ple nodes connected to the nodes of the next layer, from input
layer to output layers. The DNN training approach based on re-
stricted Boltzmann machines (RBMs), which are subsequently

fine-tuned using backpropagation algorithm. The weights for
nodes in hidden layers at iteration (t+ 1) are updated based on
iteration (t) using stochastic gradient descent using the follow-
ing equation:

wij(t+ 1) = wij(t) + η
∂C

∂wij
(4)

where wij is the weight between nodes i and j in neighboring
layers, η is the learning rate, and C is the cost function.

A detailed explanation and further discussion of the DNN
can be found in [32, 33]. Considering the trade-off between per-
formance and time cost based on our preliminary analysis, we
specified the DNN with four layers with each layer having 256
nodes. As required by the DNN implementation [34], all fea-
ture values were normalized between 0 and 1 by groups (ALS
and healthy).

3.6. Experimental Design

To understand the performance using acoustic signals only and
if adding articulatory information can benefit the classification,
three sub-configurations were used in the experiment, where
data were separated into three groups, acoustic, acoustic + lip
data, acoustic + lip data + tongue data.

Leave-one-subject-pair-out cross validation was used to test
the performance of SVM. In each execution, data samples from
one ALS patient and one healthy speaker were used for test-
ing, and the rest for training. DNN takes longer time for train-
ing, thus, in this stage, 4-fold cross validation strategy was
used. DNN classification requires a separate validation set [34].
Therefore, in each execution using DNN, data samples from
three ALS patients and three healthy speakers were used for
testing; samples from another three ALS patients and three
healthy speakers were used for validation; the rest samples were
used for training. The averaged performance of all the execu-
tion was considered the overall performance.

Accuracy, sensitivity, and specificity were used as the ma-
jor performance measures. Accuracy is the number of true pos-
itives plus true negatives divided by the number of all testing
samples. Sensitivity is the number of true positives divided by
the sum of numbers of true positives and false negatives, which
means the probability that a patient is classified as positive who
actually has the disease. Specificity is the number of true nega-
tives divided by the number of true negatives and false positives,
which means the probability that a subject is classified as nega-
tive who is healthy.

4. Results and Discussion
Figure 2 (left part) gives the results using SVM. When only
acoustic data were used, the overall accuracy, specificity and
sensitivity were all above guess level (50%). Adding lip data
(from both upper lip and lower lip) significantly increased the
accuracy, specificity, and sensitivity. In addition, adding both
lip data and tongue data (from both tongue tip and tongue body
back) further increased the accuracy to 80.91%, the specificity
to 80.51%, and sensitivity to 81.90%. Table 2 gives the summed
classification matrix of the cross validations using SVM with all
acoustic, lip, and tongue features.

Figure 2 (right part) gives the results using DNN. A promis-
ing result was obtained even when only acoustic data were used.
Adding lip data (from both upper lip and lower lip) increased
the accuracy, specificity, and sensitivity. In addition, adding
both lip data and tongue data (from both tongue tip and tongue
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Figure 2: Performances of ALS detection from combined types of data (acoustic, lip, and tongue data) using SVM or DNN, respectively.

Table 2: Classification matrix using SVM with acoustic, lip, and
tongue features. The overall accuracy is 80.91%.

Healthy ALS

Healthy 1475 357 80.51% (Specificity)
ALS 133 602 81.90% (Sensitivity)

Table 3: Classification matrix using DNN with acoustic, lip, and
tongue features. The overall accuracy is 96.57%.

Healthy ALS

Healthy 1824 8 99.56% (Specificity)
ALS 80 655 89.12% (Sensitivity)

body back) increased the accuracy to 96.57%, the specificity to
99.56%, and sensitivity to 89.12%, which were the best perfor-
mance in this experiment. Table 3 gives the classification matrix
using DNN with all data (acoustic + lip + tongue data).

The experimental results demonstrated the feasibility of au-
tomatic detection of ALS from short speech samples. In ad-
dition, adding articulatory information from lips significantly
improved the performance. Adding tongue data can further im-
prove the overall accuracy. The sensitivity for both SVM and
DNN was improved as lip data were added. When tongue data
was added on top of acoustic and lip data, SVM obtained an
even higher sensitivity.

Using articulatory movement data in practice has a logis-
tical obstacle, cause articulatory movement data are relatively
difficult to collect [22] (compared with acoustic data). However,
lip and tongue data can be converted using inverse (acoustic-to-
articulatory) mapping [20].

DNN outperformed SVM in all configurations, as shown in
Figure 2. This is consistent with our recent work on Parkin-
son’s condition estimation from speech samples [20]. Although
DNN training cost is about 3-8 minutes for one cross validation
(on the selected features), the testing time for each sample is
comparable with SVM (in milliseconds for one sample). The
experiment was executed on a PC with Intel i7 CPU 2.4GHz
with 8 GB RAM running Ubuntu Linux.

Analysis of sensitivity and specificity (e.g., receiver operat-
ing characteristic, ROC), would help to tell the tradeoff between
Type-I and Type-II errors with different parameters in the clas-
sifiers. Next step of this work would include a ROC analysis.

We think the performance could be even better if better se-
lected data stimuli were used (e.g., using samples of only one
short phrase). We used all samples in the data set to keep the
maximum number of samples. The data set contained a rich set
of stimuli (20 short phrases, and eight CVCs). Although we ex-
tracted acoustic and articulatory features and speaker character-
istics from these samples, there might be still a level of content

variation in the data. Most of work for detection of neurologi-
cal disease from speech in literature used a single or only a few
stimuli (e.g., sustained vowels [17] or a short syllable [35]).

Limitations.The healthy talkers and the ALS patients are
not exactly age- or gender-matched (some are younger than
these patients). This unbalanced subject group may cause some
unexpected bias in terms of group distinctiveness. As we ac-
tively collect data from more subjects, a larger data set with
age-matched subjects will be used to verify if the performance
level in the paper can be generalized to a larger population.

5. Conclusions and Future Work
This paper demonstrated the feasibility of the automatic detec-
tion of ALS from pre-symptom, intelligible speech samples.
Experiments using a data set collected from eleven patients with
ALS and eleven healthy talkers showed promising results. The
experiments also demonstrated that adding articulatory infor-
mation could improve the detection performance. Particularly,
even adding lip information on top of acoustic data could sig-
nificantly improve the performance. In the future, a larger data
set will be used to verify our approach for ALS detection from
speech samples. The data set will include a balanced, age- and
gender-matched ALS patients and healthy talkers.
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