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Abstract
In general, the majority of recent speaker recognition systems
employ an i-Vector configuration as their front-end. Post-
processing of i-Vectors usually requires a Linear Discriminant
Analysis (LDA) phase to reduce the dimensions of the i-Vectors
as well as improve discrimination of speaker classes based on
the Fisher criterion. Given that channel, noise, and other types
of mismatch are generally present in the data, it is better to
discriminate the speaker's data non-linearly. Generalized Dis-
criminant Analysis (GDA) uses kernel functions to map the
data into a high dimensional feature-space which leads to non-
linear discriminant analysis. In this study, we replace LDA
with GDA in an i-Vector based speaker recognition system and
study the effectiveness of various kernel functions. It is shown,
based on equal error rate (EER) and minimum of detection cost
function, that GDA not only improves performance for regu-
lar test utterances, but is also useful for short duration test seg-
ments. NIST2010 Speaker Recognition Evaluation (SRE) core
and extended-core (coreext) conditions are employed for exper-
iments; in addition, we evaluate the system for short duration
segments on the 10-sec test condition and truncated coreext test
data. The relative improvement in EER is 20% for the cosine
kernel employed here with GDA processing.

Index Terms: Speaker recognition, i-Vector, Generalized dis-
criminant analysis, Kernel.

1. Introduction

Speaker recognition systems using i-Vector feature representa-
tion [1] and Probabilistic Linear Discriminant Analysis (PLDA)
[2] scoring has been widely used as the state-of-the-art [3, 4].
These systems performe well in clean and channel mismatch
conditions; especially for core conditions of NIST speaker
recognition evaluation sets [1, 5]. Data introduced in these chal-
lenges, and also present in real world applications, may contain
distortion such as noise, speaker or channel variations. In gen-
eral, LDA [6] has been applied to i-Vectors as a post-processing
phase to minimize the ratio of within class to between class
covariance, and separate speaker-dependent factors. However,
discriminating speaker classes may be optimized by employ-
ing non-linear discriminant analysis methods, when data are not
clean.

LDA is a typical post-processing statistical method for clas-
sification and pattern recognition problems. It finds the exact
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optimum solution and performs well for linear problems [6].
LDA assumes classes are normally distributed, share the same
covariance, and can be discriminated linearly [7]. To, remove
these restricting assumptions, researchers have proposed vari-
ations of LDA, such as: heteroscedastic discriminant analysis
[8], generalized discriminant analysis or kernel DA [7, 9], mix-
ture discriminant analysis [10], etc. In this study, we consider
GDA in order to remove the assumption of linear separability
for classes.

In [11, 12], the application of various kernels in Support
Vector Machines (SVMs) with Joint Factor Analysis (JFA) [13]
has been studied, which show that the cascade of Within Class
Covariance Normalization (WCCN) [14] (as a method of com-
pensating for residual channel aspects present in the speaker
factor space) and cosine kernel results in the best combined
performance. When i-Vector feature representation introduced,
the kernel SVMs and cosine scoring were the main classifica-
tion approaches [1]. After that, the combination of i-Vector
and PLDA verification became the most popular speaker recog-
nition system. To improve i-Vector/PLDA, [15] applied non-
parametric discriminant analysis or nearest-neighbor discrimi-
nant analysis (NDA) approach instead of traditional LDA and
proved NDA is effective especially in channel degraded and
noisy conditions. Also, [16] propagates the uncertainty of i-
Vectors in LDA to overcome the problem of short duration test
utterances in speaker recognition systems. Here, the effective-
ness of kernel based discriminant analysis approaches in the i-
vector/PLDA system is studied.

Many studies attempt to make i-Vector based systems ro-
bust to noise [17], or short duration utterances [18, 19]. In these
cases, extracted i-Vectors are not as reliable as before; there-
fore, the uncertainty of i-Vectors has been propagated through
the system, or different score calibration methods [18] have
been introduced to partially address the problem. Here, we aim
to study the effectiveness of GDA for long and short duration
test segments on NIST SRE 2010 [20] task that already spans
a range of distortions. We will assess i-Vector/PLDA system
when GDA post-processed i-Vectors are employed.

In this paper, first Sec. 2 presents an overview of i-Vector
based speaker recognition systems. Next, Sec. 3 covers conven-
tional LDA and GDA approaches. In Sec. 4, the experimental
setup and results comparing LDA and GDA will be provided.
Conclusions and future work are summarized in Sec. 5.

2. i-Vector based speaker recognition

The overall block-diagram of our i-Vector based speaker recog-
nition system using PLDA scoring is depicted in Figure 1. In
an i-Vector configuration, the speaker and channel dependent
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Figure 1: Overview of the i-Vector/PLDA systems. Development data DEV used for training UBM, total variability (TV) matrix, LDA
(or GDA) and PLDA, enrollment and test data used for evaluation of the system.

Gaussian Mixture Model (GMM) supervector is factorized as:

M = m+ Tw (1)

where m is the mean supervector of Universal Background
Model (UBM), T is the low rank total variability matrix, and
w is identity vector well known as i-Vector.

Both UBM and total variability matrix are trained with the
Expectation Maximization (EM) algorithm using development
data. In the E-step, w is considered as a latent variable and is
assumed to have a standard normal prior distribution [1, 21].
After training the UBM and total variability matrix, i-Vectors
are extracted as the mean of posterior distribution of w that is
equal to [1, 21]:

ŵ(u) = (I + TT Σ−1N(u)T )−1TT Σ−1S(u) (2)

where Σ is the covariance matrix of UBM, N(u) and S(u) are
zeroth and centralized first order statistics of the UBM extracted
from utterance u. Finally, the post-processed i-Vectors are used
to calculate the PLDA score.

3. Post-processing of i-Vectors
Post-processing of i-Vectors usually contains length normaliza-
tion, applying LDA and WCCN [16]. In this study, we explore
the performance of speaker recognition when LDA is replaced
with GDA. The following subsections briefly discuss traditional
LDA versus GDA method.

3.1. Linear discriminant analysis (LDA)

LDA finds a linear transformation of features that maximizes
the Fisher-Rao criterion. The separation of speaker classes in
the direction of W is equal to,

λ =
WTSBW

WTSWW
, (3)

where SB and SW represents the between class and within
class scatters respectively. When W maximizes S−1

W SB , the
class separation will be maximized as well. In other words, the
eigenvectors corresponding to the largest eigenvalues in solving
λSWW = SBW leads to the optimal projection matrix W .

For dimensionality reduction to k, the eigenvectors of the
k largest eigenvalues are placed in matrix W . Thereafter, the
projected feature vectors are calculated by WTx, where x rep-
resents the input feature vector.

In Eq. 3, SB and SW are defined as,

SB =
1

C

C∑
c=1

nc(µc − µ)(µc − µ)T (4)

SW =
1

C

C∑
c=1

∑
k∈c

(xk − µc)(xk − µc)
T , (5)

whereC represents the number of speaker classes and nc repre-
sents the number of samples in class c. In addition, µc and µ are
the mean of class c and overall mean of samples, respectively.

3.2. Generalized discriminant analysis (GDA)

Traditional LDA assumes data are normally distributed and dis-
tinct classes share the same covariance matrix; then it finds a
linear transformation of the feature vectors. On the other hand,
GDA first maps the data into a new feature space and then finds
a linear transformation. Mapping to the new space is carried out
using kernel methods. As the mapped feature vectors are non-
linearly related to the input versions, GDA effectively provides
a non-linear discriminant analysis for the input feature data [7].

More specifically, GDA first maps feature vectors x in
space X to feature vectors φ(x) in space F . Next, the between
and within class scatters will be updated as (assuming observa-
tions are centered in F ),

SBf =
1

C

C∑
c=1

ncφ̄cφ̄c
T (6)

SWf =
1

C

C∑
c=1

∑
k∈c

φ(xk)φ(xk)T (7)

where φ̄c is the mean of class c in feature space F (i.e. mean of
φ(x) for x in class c). To generalize LDA, we need to formulate
the eigenvalue resolution problem in a dot-product format. Let
us define the following kernel function:

k(xi, xj) = φ(xi)
Tφ(xj) (8)

where i and j range from 1 to the total number of training
samples, (i.e., nx). Then, define K to be a nx × nx ma-
trix containing k(xi, xj). By defining the block-diagonal ma-
trix M = (Mc)c=1,...,C with the same size as K for each

Mc =
1

nc
× I(nc × nc); then Eq. 3 in the feature space F

can be formulated as,

λf =
αTKMKα

αTKKα
, (9)

where α are the coefficient vectors that satisfy ν =∑C
c=1

∑
k∈c αkφ(xk); ν are the eigenvectors of λfSWfν =
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Table 1: Number of speakers (Spkrs) and segments used for training the models of UBM, TV, LDA/GDA, PLDA, and the number of
enrollment segments and statistics of trails.

Enrollment/Test UBM-TV PLDA LDA/GDA Enrollment Trials
combination Spkrs Segments Spkrs Segments Spkrs Segments Spkrs Target nonTarget
Core/Core 2426 353 13707

Core/10Sec 5756 57273 1115 13605 1078 10000 2426 290 11700
Coreext/3,5,10,20,40s 5237 3465 175873

SBfν. Since, the eigenvectors are linear combinations of fea-
ture vectors in space F , there exist a non-unique set of α coef-
ficients. More details are provided in [7].

To solve Eq. 9, matrix K can be decomposed as:

K = PΓPT . (10)

By defining β = ΓPTα and replacing K with Eq. 10 in Eq. 9
and simplifying the equation, we can reach the following eigen-
vector system:

λfβ = PTMPβ. (11)

For eigenvectors β, there exists α = PΓ−1β. From α, the
eigenvectors ν can be computed which leads to the projection
matrix in feature space F .

4. Experiments and results
4.1. Database and experimental setup

For all systems in the experiments, 60 dimensional Mel-
frequency features have been extracted, that include 19 dimen-
sional static features as well as the frame energy along with their
delta and delta-delta coefficients. Speech signals have been
framed using 25-ms length windows with a 10-ms skip rate.
In addition, features have been normalized using a 3-sec slid-
ing window. Next, energy-based voice activity detection (VAD)
was used to remove non-speech frames.

Experiments have been carried out on NIST SRE2010 [20],
telephone condition (condition 5). 2048-mixture UBM and total
variability matrix have been trained using data collected from
SRE2004, 2005, 2006, 2008, and Switchboard II Phase 2 and
3, and Switchboard Cellular Part 1 and 2 (both male and female
speakers). Next, 600-dimensional i-Vectors were extracted for
all utterances. For LDA and GDA, the dimension size is re-
duced to 400, followed by length normalization. Training data
for LDA, GDA, and PLDA is restricted to male speakers from
NIST SRE2004, 2005, 2006, 2008 data. In addition, the trails
used for experiments just contain male enrollment and test seg-
ments.

The enrollment/test segment condition combinations that
have been evaluated in this study, the number of speakers and
segments for training UBM, total variability matrix, LDA, GDA
and PLDA, data used for enrollment, and statistics of trials are
summarized in Table 1. Core and extended core conditions
(coreext) have duration ranging between 3 to 5 minutes.

To examine the effectiveness of GDA for short test seg-
ments, the coreext test data was truncated into 3-sec, 5-sec, 10-
sec, 20-sec, and 40-sec segments. Extracting these short test
data has been carried out after applying VAD; therefore, they
do not contain non-speech frames. In addition, no modifica-
tions have been applied on the enrollment or training data.

4.2. Kernel variations for GDA

The various kernel functions that have been used in the exper-
iments are covered in this subsection. The linear kernel leads

to traditional LDA, where between the i-Vectors w1 and w2 is
defined as,

k(w1, w2) = 〈w1, w2〉. (12)
We use this as a baseline discriminant analysis. The cosine ker-
nel is also used and defined as,

k(w1, w2) =
〈w1, w2〉
‖ w1 ‖‖ w2 ‖

. (13)

The angles between i-Vectors is the only aspect captured by the
cosine kernel. [1] states that the magnitude of i-Vectors may
just contain information about channel and session which is not
valuable in speaker recognition; therefore, when the cosine ker-
nel removes the magnitude, we expect an improvement over a
linear kernel.

The Within Class Covariance Normalization (WCCN) sup-
presses channel affects without removing any direction in the
feature space. The projection matrix B for WCCN is achieved
by a Cholesky decomposition of the within class scatter in Eq. 5
as S−1

w = BBT . Here, we apply WCCN to the cosine ker-
nel that updates it as (this kernel will be referred to ”WCCN-
Cosine” kernel in the experiments):

k(w1, w2) =
(BTw1)T (BTw2)√

(BTw1)T (BTw1)
√

(BTw2)T (BTw2)
.

(14)
The other kernel variation (named as ”LDA-Cosine”) uses the
LDA projection matrix in the cosine kernel. The background
on LDA was provided in Sec. 3.1. If we name the projection
matrix as A, which is the ordered eigenvectors based on the
highest values of eigenvalues, then the kernel would be,

k(w1, w2) =
(ATw1)T (ATw2)√

(ATw1)T (ATw1)
√

(ATw2)T (ATw2)
.

(15)
Here, we have extracted 600-dimensional i-Vectors, and for

this kernel the eigenvectors of the 600 largest eigenvalues have
been selected for the projection matrix A. Therefore, we did
not reduce the dimension of i-Vectors with projection matrixA;
however, after transforming with A and applying cosine kernel
the dimension is reduced to 400, as the other kernels.

We also used the cascade of LDA and WCCN to project
the feature vectors, and then employ the cosine kernel. LDA
and WCCN have different objectives in finding the projection
matrix; therefore, we examined their combination in the appli-
cation of kernel for GDA. We will refer to the kernel as ”LDA-
WCCN-Cosine” kernel.

In [22], the authors proposed Gaussianized Cosine Distance
Scoring (GCDS) that improved traditional cosine distance scor-
ing. It was claimed there that estimating WCCN projection
matrix in noisy and/or channel mismatch condition is difficult.
Therefore, they replaced the cascade of LDA, WCCN, and co-
sine distance scoring with GCDS method. Here, we take advan-
tage of this idea and modify the algorithm to be used as a kernel
function. Therefore, our ”Gaussianized cosine kernel” is based
on the the following routine:
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Table 2: Speaker recognition results comparing LDA and GDA using various kernel functions in terms of EER/minDCF. LDA and GDA
reduce the dimension of i-Vectors from 600 to 400.

LDA GDA
Enrollment/Test Linear Cosine WCCN- LDA- LDA-WCCN- Gaussianized-

Segments Cosine Cosine Cosine Cosine
Core/Core 1.416/.0353 1.133/.0351 1.539/.0346 1.416/.0337 1.641/.0289 1.133/.0339

Core/10Sec 4.838/.0586 5.172/.0624 5.517/.0575 4.828/.0621 4.854/.0671 4.828/.0596
Coreext/Coreext 1.438/.0301 1.384/.0309 1.558/.0319 1.44/.0320 1.789/.0315 1.414/.0323

Coreext/Coreext3sec 14.170/.0988 14.343/.0978 14.113/.0987 14.430/.0988 14.660/.0988 14.343/.0988
Coreext/Coreext5sec 9.770/.0949 9.783/.0936 9.610/.0943 9.755/.0959 10.085/.0956 9.812/.0956

Coreext/Coreext10sec 5.672/.0755 5.722/.0791 5.628/.0784 5.887/.0785 6.147/.0776 5.830/.0777
Coreext/Coreext20sec 3.319/.0592 3.27/.0598 3.377/.0612 3.282/.0606 3.603/.0616 3.280/.0590
Coreext/Coreext40sec 2.424/.0451 2.403/.046 2.612/.0466 2.444/.0452 2.751/.0462 2.395/.0460

• The mean m and standard deviation v of training data
are first calculated.

• All data including training, enrollment and test data will
be Gaussianized. In other words, for every i-Vector w,

the new vector will be modified to w =
w −m
v

.

• The Gaussianized i-Vectors are length normalized.

• The LDA projection matrix A trained over training data
is calculated next.

• All data are then projected into the new feature space.
In other words, for every i-Vector w, the transformed i-
Vector will be w = ATw.

• The new i-Vectors are length normalized again.

• Finally, these data are used in calculating the cosine ker-
nel defined in Eq. 13.

The linear kernel in GDA is equivalent to the traditional LDA
method, and will be compared to the above-mentioned varia-
tions of cosine kernel. For training GDA and LDA, a smaller
subset of training speech segments (e.g., 10000 vs. 13605) was
used (to limit the usage of memory); while, PLDA is trained on
the entire male data (e.g., 13605).

4.3. Experimental results

This subsection provides evaluation of speaker recognition
comparing the effectiveness of LDA and GDA methods for dis-
criminant analysis and dimensionality reduction.

To assess the system, we use Equal Error Rate (EER) and
minimum of decision cost function (minDCF) calculated by,

CDet = CMiss × PMiss|Target × PTarget

+CFalseAlarm × PFalseAlarm|NonTarget × (1− PTarget)

Default values for parameters in this equation has been set as
CMiss = CFalseAlarm = 1 and PTarget = 1/1000 from the
NIST SRE2010 challenge.

Results in terms of EER and minDCF are summarized in
Table 2. The EER results show that in all enrollment/test
segment condition combinations, GDA improves LDA. Spe-
cially, Cosine and WCCN-Cosine have the best results for EER.
For minDCF, just in coreext/coreext, coreext/coreext10sec,
coreext/coreext40sec combinations, the linear kernel provides
slightly better results, but in other cases GDA performed better.

Generally, the improvement of GDA over LDA is more
clear in longer duration test segments. Because, i-Vectors ex-
tracted for shorter test data are not as accurate as the longer

ones; therefore, non-linear discrimination cannot perfectly lo-
cate them in their correct speaker classes.

Here, the cosine kernel performs the best among other ker-
nel functions including the linear kernel (or LDA). After that,
WCCN-Cosine and Gaussianized-Cosine and Linear kernels
achieved effective performance. However, the LDA-Cosine
kernel and LDA-WCCN-Cosine unexpectedly did not provide
sufficient improvement over the other kernel functions. In
summary, experimental results show that GDA is a promis-
ing dimensionality reduction and discrimination approach for
i-Vector/PLDA system. With GDA the relative improvement of
20% in EER and 18% in minDCF with core/core condition is
achieved.

5. Conclusion and future work
In this paper, we have studied the usefulness of GDA in state-
of-the-art i-Vector based speaker recognition using PLDA scor-
ing. Most speaker recognition approaches use LDA to sepa-
rate speaker classes and reduce the dimensionality of the fea-
ture vectors. Alternatively, GDA relaxes the linear separabil-
ity of classes, which can be effective if unknown distortion or
mismatch is present. We used NIST SRE2010 core and coreext
conditions for experiments, and results show that GDA achieves
effective gains for improving i-Vector/PLDA systems.

The cosine kernel, using WCCN before cosine kernel, and
the Gaussianized cosine kernel achieved better performance
compared to other kernel functions. The combination of LDA
and WCCN before the cosine kernel did not provide improve-
ment. The LDA used here merely separates speaker classes and
does not perform dimensionality reduction. In the future, a cas-
cade of LDA and WCCN with dimensionality reduction to vari-
ous sizes will be studied in combination with the cosine kernel.

The relative gain for short test segments is not as compara-
ble as that for the original long versions. Therefore, for future
work, we would like to introduce uncertainty of i-Vectors into
GDA to make the system more robust. In previous works, re-
searchers had applied uncertainty of short test segment in LDA,
PLDA, or in the scoring phase to obtain improvement. There-
fore, GDA using uncertainty information could be better for
short test data. In addition, the effectiveness of GDA for i-
Vector/PLDA systems when input data contains different ratios
of SNR will be studied.
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