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Abstract
This paper examines a text-available speaker recognition

approach targeting scenarios where the transcripts of test utter-
ances are either available or obtainable through manual tran-
scription. Forensic speaker recognition is one of such appli-
cations where the human supervision can be expected. In our
study, we extend an existing Deep Neural Network (DNN) i-
vector-based speaker recognition system to effectively incor-
porate text information associated with test utterances. We
first show experimentally that speaker recognition performance
drops significantly if the DNN output posteriors are directly re-
placed with their target senone, obtained from force alignment.
The cause of such performance drops can be attributed to the
fact that forced alignment selects only the single most prob-
able senone as their output, which is not desirable in a cur-
rent speaker recognition framework. To resolve this problem,
we propose a posterior mapping approach where the relation-
ship between forced aligned senonoes and its corresponding
DNN posteriors are modeled. By replacing DNN output pos-
teriors with senone mapped posteriors, a robust text-available
speaker recognition system can be obtained in mismatched en-
vironments. Experiments using the proposed approach are per-
formed on the Aurora-4 dataset.
Index Terms: speaker recognition, forensic speaker recogni-
tion

1. Introduction
Research on speaker recognition has focused either on text-
dependent or text-independent scenarios [1–3]. Text-dependent
speaker recognition assumes that the same speech content is
used for enrollment and recognition. On the other hand, text-
independent speaker recognition does not have any constraint
on the speech content. Moreover, most of the text-independent
speaker recognition system assume that the content of speech
utterances is unknown. However, in many speaker recognition
scenarios, the text of speech utterances for both enrollment and
recognition could be obtained through manual transcription.

Forensic speaker recognition [4] is one such application; the
nature of forensic casework means that there is always supervi-
sion of the automatic system by the forensic expert. As laid out
in recent European guidelines [5], before any speech content is
passed to an automatic system, it should first be manually eval-
uated by the forensic expert. The ‘quality of the speech content
is assessed in terms several factors, including its duration, the
vocal effort and emotional state of the speaker, along with envi-
ronmental noise or channel effects. If these quality factors are
satisfactory, the speaker is broadly profiled in terms of gender,
age and accent, informing the choice of a suitable speaker pop-
ulation for calibration/normalization within the automatic sys-
tem. At this point, a manual transcription of the speech could

be made, and potentially passed to the automatic system along
with the speech recordings. This transcription of the evidential
recording would form part of the experts case report.

One of the major challenges in speaker recognition is
the mismatch between the speech samples under comparisons
[6–9]. In this paper, we investigate the use of text information
to improve the robustness of a speaker recognition system in
mismatched conditions. Previous studies has investigated text-
available speaker recognition problems, with most of them fo-
cused on text prompt speaker recognition [10–13]. However,
to the best of our knowledge, no study has yet been able to ef-
fectively incorporate text information to improve the speaker
recognition system from the perspective of speaker modeling,
particularly in a state-of-the art speaker recognition system
based on i-vector extraction and PLDA modeling.

The main reasons that text information has not been effec-
tively used in i-vector based speaker recognition systems is the
lack of direct correspondence between the universal background
model (UBM) and a speech transcript. The recently proposed
DNN-based i-vector extraction [14] has the potential to over-
come such limitation, as the traditional UBM is replaced with
tied-state triphones (senones), that are strongly correlated with
the content of the underlying speech utterances. In fact, the
target output of each speech frame used for training DNN sys-
tem comes directly from the senone labels obtained from forced
alignment of speech transcripts. However, the experiments in
our study indicate that by directly replacing DNN predictions
with its ground truth target senone significantly decreases the
performance. This is mainly due to the fact that the use of hard
alignment, e.g., force alignment, introduces inaccuracies that
are better avoided when using i-vector based approaches.

To resolve the hard alignment problem of using senone
forced alignment in speaker recognition, we propose to model
the relationship between target senone and its corresponding
DNN prediction probabilities in training data. This is achieved
by averaging the DNN prediction probabilities from frames that
are aligned with each senone target.

At the test time, instead of using the posteriors obtained
from DNN prediction, the posteriors mapped from correspond-
ing senones are used for both total variability matrix training
and i-vector extraction. The advantage of using mapped pos-
teriors from force aligned senones is most significant in mis-
matched environments where the DNN prediction becomes less
reliable. The force alignment is expected to be more robust
compare to DNN prediction in noisy environments, as a strong
prior information is provided by means of speech transcript.

In Sec. 2, we present a short overview of the DNN based
i-Vector extraction. Sec. 3 contains the description of proposed
method. In Sec. 4 and 5, we present results to show the effec-
tiveness of proposed framework.
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2. i-vector extraction
2.1. UBM based i-vector extraction

In i-vector extraction framework, speaker and channel depen-
dent Gaussian mixture model (GMM) supervector is modeled
as belows:

M = m+ Tw, (1)

where m is the supervector generated from the UBM means,
T is the total variability matrix formed by the basis of reduced
total variability space, and w is the factor loading also known
as i-vectors.

The total variability matrix T is estimated by using expec-
tation maximization (EM) method as described in [15]. After
total variability matrix training, the i-vector of each speech ut-
terance can be represented using Baum-Welch zeroth (Ns) and
centralized first (Fs) order statistics:

w∗s = (T ′NsΣ−1T + I)−1TΣ−1Fs, (2)

where Σ is the covariance matrix obtained from UBM model
and I is the identity matrix. Here, Ns and Fs are expressed as

Ns =


NC=1

s 0 0 0

0 NC=2
s 0 0

... ... ... ...

0 0 0 NC=c
s

 , (3)

Fs =


FC=1
s 0 0 0

0 FC=2
s 0 0

... ... ... ...

0 0 0 FC=c
s

 , (4)

where

NC=c
s =

∑
t

P (c|Xt, θUBM ), (5)

FC=c
s =

∑
t

P (c|Xt, θUBM )(Xt − µc). (6)

and c is the index of UBM mixture component, Xt is acoustic
feature at time t, µc is the mean of cth Gaussian component.

2.2. DNN based i-vector extraction

In DNN based i-vector extraction approach [14], the UBM is
replaced with stacked senones and the posterior probabilities
of each speech belongs to individual senones are obtained with
DNN predictions. During the training of DNN model, the tar-
get senones of each frame are generated by force aligning each
acoustic frame with given speech transcript.

2.3. Force alignment based i-vector extraction

As the prediction target of DNN for building i-vector system is
obtained from force alignment, the straight forward way of in-
troducing text information in speaker recognition is to replace
the predicted DNN posteriors with its ground truth senone target
obtained from transcripts. The posterior vector of each speech
frames obtained from force alignment is a vector of zeros with
only the senone that aligned with corresponding speech frames
being one. However, our experiment results show that the di-
rect replacement of DNN posteriors with force aligned senone
estimation, decrease the performance dramatically (Table. 1).

2.4. DNN posterior weighting

The reason of such performance loss when using ground truth
senone target is that the output of force alignment assign only
single senone to each frame. The limitations of such hard align-
ment could be manifold including the sparseness of speech data
in accordance with certain senones.

To overcome such limitation, we apply the fusion of DNN
posterior with forced aligned senone prediction. That is, the
DNN posterior probability associated with aligned senones are
forced to increase as shown below.

p′(k|xt) = α×p(k|xt) + α×1, if st = k

p′(k|xt) = α×p(k|xt) + α×0, if st 6=k
(7)

where k is senone id, p(k|xt) indicates the DNN prediction
probability associated with kth senone. The α is weighting fac-
tor that control the contributions of each part. In our experi-
ment, a good performance is obtained by setting α as 0.9.

2.5. Posterior mapping

While the DNN posterior weighting in Sec. 2.4 could effectively
incorporate alignment information from transcript in a softer
way than directly using force alignment, it is not theoretically
well motivated and involves a use of hyper-parameter for fus-
ing the posteriors from two different sources. In this section,
we propose another approach, which models the correlation be-
tween force alignment and DNN prediction in the training data.
The objective of this approach is to find the maximum likeli-
hood DNN posterior vectors given force alignment. The pos-
teriors obtained with this approach is more robust to the ones
obtained from DNN prediction, as the effect of noise or mis-
match environment on force alignment is much less than DNN
prediction due to supervised information from transcription.

Specifically, we model the correlation between force align-
ment and DNN posterior probabilities using the posterior prob-
abilities obtained from DNN training data. As during training,
there is an one to one mapping between force alignment and
DNN posteriors for each speech frame. Note that the data used
for training this relationship has no overlap with the ones used
for composing speaker verification trials. We model the corre-
lation between DNN posteriors and their targets senone which
obtained from force alignment as follow:

Mk =

∑
st=k pt

T
(8)

where Mk is the average of DNN posterior probability associ-
ated with target senone k, pt is the DNN posterior prediction
vector as

pt = [p(s1|xt), p(s2|xt), ..., p(sK |xt)], (9)

T is the total frame number,. After obtain Mk for each senone
using training, we replace pt with Mk, if the speech frame xt
is aligned with k-th senone. We perform such posterior map-
ping during both total variability matrix training and i-vector
extraction states.

Fig. 1 is an example of posterior mapping obtained from
500th and 1000th senone respectively. The upper plot of Fig. 1
is the average posterior prediction on the training data when tar-
get Senone is 500. As expected, the average posterior probabil-
ity on Senone 500 is much higher than the other ones. However,
it is interesting to notice in the lower plot of Fig. 1 that the high-
est posterior probability when target Senone is 1000 is actually
other senones. This indicates that the prediction of Senone 2000
is easily confused by other Senones.
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Figure 1: The mapped posteior vector for senone-500 and senone-1000.

3. Experiments
3.1. System setup

As the standard speaker evaluation corpus such as NIST SRE
does not include speech transcripts, the proposed text based
speaker recognition system is evaluated on Aurora-4 database.
The Aurora-4 is noisy version of Wall Street Journal (WSJ0)
corpus. The multi-condition training set including 7137 utter-
ances from 83 speakers. Half of the training utterances are ob-
tained from the primary Sennheiser microphone. The other half
are recordings from different secondary microphones. Part of
those utterances are clean speech without noise and the other
part are consists of corrupted utterances with six different noises
(street traffic, car, train station, babble, airport, restaurant) at 10-
20 dB SNR.

The UBM based i-vector extraction system are trained on
multi-condition training set. The 2048 mixture of UBM and 400
dimension total variability matrix is trained on MFCC features
of 39 dimension (13+4+44). For backend verification both
the cosine distance similarity (CDS) measure and probabilistic
linear discriminant analysis (PLDA) are used for evaluation [16,
17].

For bulding DNN based i-vector extraction system [18],
GMM-HMM models with 3024 distinct tied-state triphones are
trained using MFCC features along with their linear discrimi-
nant analysis (LDA) and maximum likelihood linear transform
(MLLT). The alignment obtained from GMM-HMM system is
then used for training DNN-HMM system. For the DNN-HMM
systems, we first generatively pretrain the DNN with 7 layers of
stacked RBM with 2048 hidden nodes in each layer. The DNN-
HMM system was trained with 40 dimensional log Mel filter-
bank (FBANK) features. We use 256 minibatch and 0.008 as
the start learning rate. After each epoch of training, the learning
rate is reduced by half when the improvements in development
set are less than 0.5%.

3.2. Results

The evaluation is performed on 2324 utterances from 8 unique
speakers. A total of 806433 trials are created, including 98518
target trials. The experiments results are shown for both noisy
trials in Table. 1 and clean trials in Table. 2. The results indicate
that DNN based i-vector extraction does not show much advan-
tages over UBM based i-vector extraction due to the limited

Table 1: Experiment results on trials with utterances including
both noisy and clean one.

CDS PLDA

I-vector (UBM) 19.48 8.15

I-vector (DNN) 17.87 8.84

I-vector (FA) 29.93 12.29

I-vector (DNN+weight) 16.30 8.00

I-vector (DNN+mapping) 15.91 6.67

Table 2: Experiment results on trials from clean utterances only.

CDS PLDA

I-vector (UBM) 5.39 2.05

I-vector (DNN) 6.72 2.45

I-vector (FA) 14.47 4.41

I-vector (DNN+weight) 5.66 1.79

I-vector (DNN+mapping) 7.11 1.27

amount of data used for training DNN. It can also be observed
that the direct use of force alignment (FA), decrease the perfor-
mance significantly. This indicates the importance of soft align-
ment in i-vector extraction. On the other hand, the proposed
approaches based on DNN posterior weighting and DNN pos-
terior mapping consistently outperforms both UBM and DNN
based i-vector systems in noisy conditions. The relative im-
provement is higher using PLDA modelling approach. This can
be explained by the fact that the utterances used for training
PLDA is also noisy and therefore benefit more from proposed
approaches. The best performing system is based on DNN pos-
terior mapping in both noisy and clean evaluation setup.
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4. Conclusion
In this study, we investigate the use of text information for
improving the robustness of speaker recognition system. The
proposed approached could potentially be beneficial for foren-
sic speaker recognition where the human supervision can be
expected. We evaluated the proposed systems using Aurora-
4 database which has been widely used in the area of robust
speech recognition. The experimental results indicate that pro-
posed text available i-vector extraction framework consistently
outperform conventional UBM and DNN based i-vector sys-
tem. While the proposed approaches based on DNN-posterior
weighting and mapping could effectively introduce text infor-
mation into speaker modelling, further studies are needed to
fully exploit the text knowledge.
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