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Abstract
During the first two years of life, human infants produce in-
creasing numbers of speech-like (canonical) syllables. Both
basic research on child speech development and clinical work
assessing a child’s pre-speech capabilities stand to benefit from
efficient, accurate, and consistent methods for counting the syl-
lables present in a given infant utterance. To date, there have
been only a few attempts to perform syllable counting in infant
vocalizations automatically, and thorough comparisons to hu-
man listener counts are lacking. We apply four existing, openly
available systems for detecting syllabic, consonant, or vowel
elements in vocalizations and apply them to a set of infant ut-
terances individually and in combination. With the automated
methods, we obtain canonical syllable counts that correlate well
enough with trained human listener counts to replicate the pat-
tern of increasing canonical syllable frequency as infants get
older. However, agreement between the automated methods and
human listener canonical syllable counts is considerably weaker
than human listeners’ agreement with each other. On the other
hand, automatic identification of syllable-like units of any type
(canonical and non-canonical both included) match human lis-
teners’ judgments quite well. Interestingly, these total syllable
counts also increase with infant age.
Index Terms: automatic syllable detection, canonical babbling,
infant vocalization

1. Introduction
A canonical syllable has full articulation of at least one con-
sonant and at least one vowel, with swift, adult-like transitions
between the two. Infants’ production of canonical syllables is
of interest to basic scientists because such syllables are foun-
dational elements of human speech. At roughly 7 months of
age, infants begin regularly producing canonical syllables as
part of their vocal repertoires [1, 2, 3, 4, 5]. Studies track-
ing infants from 4 months to 18 months of age have indicated
that the ratio of canonical syllables to non-canonical syllabic
units increases steadily over this time period [6, 7]. Canonical
syllable production has been shown to relate to later speech-
language abilities [8, 9, 10]. Further, canonical syllable produc-
tion rates have been shown to differ in certain at-risk groups,
particularly children later diagnosed with autism spectrum dis-
order (ASD) [11] and children with severe hearing impairment
[12, 13, 14, 15, 16].

Automated methods have the potential to greatly speed up
the assessment of how many canonical syllables are present
within infant vocalizations. Methods for automatic detection
of canonical babbling skills could potentially become useful in
early diagnosis of disorders such as ASD [17] as well as in
interventions. Such tools would also be very useful for basic
science researchers, who are increasingly relying on daylong

audio recordings combined with automated analysis methods.
In addition to providing a more efficient means of coding data
than human listeners, a notable advantage of automated meth-
ods is their consistency: the same algorithm will always ap-
ply the same criteria in estimating the number of syllables in a
vocalization; human raters may not. Automated methods hold
promise for standardizing the characterization of infant vocal-
izations across studies, human raters, and labs.

Here we compare four existing tools on how well they
match trained human listeners’ judgments of the number of syl-
lables and canonical syllables present in infant vocalizations,
individually and in combination. We compare human-machine
reliability to human-human reliability. Finally, we attempt to
use the automated methods to replicate the pattern found in
previous studies of more canonical syllables produced with in-
creasing infant age. Note that our current goal is only to count
the number of syllables, not to phonetically transcribe those syl-
lables. Although phonetic transcriptions would be highly valu-
able, they would presumably be extremely challenging, as even
trained human transcribers show show relatively low inter-rater
reliability for transcription of infant utterances [18].

2. Method
2.1. Recording and infant utterance identification

Our data came from 531 recordings of 16 English-learning in-
fants (9 female) who participated in a longitudinal study from
3 to 20 months of age. Recordings were made in a laboratory
designed to mimic a home nursery setting. Caregivers and in-
fants engaged in free play sessions, sometimes with lab staff
involved, or the caregiver was engaged in an interview with the
lab member while the infant was present.

Human listeners labeled the onsets and offsets of each in-
fant vocalization. Vocalizations perceived as taking place dur-
ing the same breath out were grouped together. Infant ut-
terances included protophones (babbling, squealing, growling,
quasivowels, yells, whispers, ingressive vocalizations, etc.), re-
flexive sounds (cries and laughs), and vegetative sounds (e.g.,
burps, sneezes, coughs, etc.). In total, 57,629 utterances were
identified. Example utterances can be found in the multimedia
files accompanying this paper.

2.2. Human identification of canonical syllables

Three human listeners (Listener 1 was the first author and Lis-
teners 2 and 3 were undergraduate research assistants) judged
randomly selected infant utterances. Listeners 2 and 3 were
given training on the definition of a canonical syllable, through
a combination of in-person training with the first author, read-
ing a chapter that provides definitions for canonical syllables,
marginal syllables, and other protophone categories [5], and
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undergoing example-based training through the Infant Vocal-
ization Interactive Coder Training (IVICT) program [19].

Two classes of syllables were counted: (1) “infant-
produced syllables (either canonical or noncanonical)” (mini-
mum value of 1) and (2) “infant-produced canonical syllables
(adult-like syllables containing at least one consonant other than
“h” and at least one vowel)” (no minimum). “h” was excluded
based on the reasoning that glottal stops and glottal fricatives
do not require supraglottal articulatory control [6]. Thus, to-
tal syllable count gives the number of general amplitude nuclei
whereas canonical syllables are the subset of the total syllables
where there are both consonant and vowel components having
features of well-formed adult speech. Canonical syllables are
more advanced from a speech production standpoint.

Listeners also indicated when the utterance appeared to be a
mis-labeling (i.e. it didn’t actually contain an infant utterance),
when it appeared to be a cry, laugh, or vegetative sound (e.g.
a cough or a burp), and when there was overlap from another
human or from a non-human sound source. After excluding
sounds where at least one listener indicated any of these issues,
there were 85 utterances labeled by Listener 1, 2,515 labeled
by Listener 2, and 687 labeled by Listener 3. Listener 1 did
not make enough judgments to afford inter-rater comparisons,
so those are based on comparisons between Listener 2’s and
Listener 3’s judgments only.

2.3. Syllable Detection methods

Our syllable detection and data analysis code is avail-
able at https://github.com/AnneSWarlaumont/
CountInfantSyllables (v0.1.1).

We applied four different freely available algorithms for de-
tecting syllables, salient events, or phones in speech or babble.
Note that Oller et al. have reported good results using another
algorithm [17], but as that method is not yet openly available, it
is not represented among those tried here.

2.3.1. Speechmark syllable detection

The first existing tool was the syllable detection method from
the freely available SpeechMark software. This is the only tool
of the four that was specifically designed to process infant vo-
calizations (it also can process adult vocalizations depending
on the user’s settings). [20, 21]. SpeechMark takes a “land-
mark” [22] analysis approach. It looks for regions of the audio
recording where there are abrupt changes in the signal, either
in its amplitude or in its spectral properties, and classifies these
changes into different acoustic-phonetic types. SpeechMark in-
cludes a syllabic analysis that finds regions where there are sets
of landmarks indicating likely onset or offset of a syllable unit
[23, 21]. We used the count of syllables provided by this feature
of the SpeechMark software as a feature to try to predict the to-
tal number of syllables and the number of canonical syllables in
our infant vocalization data.

SpeechMark also allows for more specific analyses based
on the particular types of landmarks involved. These ought to
be useful for differentiating canonical from non-canonical syl-
lables (see [24] for a similar approach with promising results).
This would require some additional processing steps so it is left
as a future direction.

2.3.2. de Jong & Wempe syllable detection

The second tool we investigated was the syllable detection
method of de Jong & Wempe, implemented in Praat [25]. The

method uses amplitude information and pitch estimates to esti-
mate the locations of syllabic nuclei within a waveform. Nuclei
are assumed to be located during voiced portions of the sound
where there are amplitude peaks. The algorithm was developed
and tested on adult speech data. One of us has previously ap-
plied it to analyze synthesized vocalizations [26]. It was un-
known how the method would perform at identifying syllabic
nuclei in infant vocalizations.

2.3.3. Coath & Denham salient event detection

The third tool was developed by Coath, Denham, and colleagues
to model the auditory salience of a stream of input to the audi-
tory system [27, 28, 29]. This method attempts to model the
processing performed by both peripheral and cortical nervous
system regions. In essence, the system detects “edges” in the
sound stimulus, either marked by changes in the activation of
spectral components or by onsets or offsets of “cortical filters”
(spectro-temporal patterns learned by machine learning over an
adult American English speech corpus). The model has pre-
viously been shown to be able to track beats in sung music
[28, 29]. We used the program described in [28], modified to
use a lower threshold salience for event detection (thresh0 = .3
instead of 1) and a smaller divisor for the threshold adaptation
(div1 = 1 instead of 2, so there was no adaptation over time).

Table 1: Spearman’s rank correlation coefficients (ρ) between
the individual syllable detection methods and human syllable
judgments. All correlations are statistically significant, p <
.001. 95% confidence intervals are in parentheses.

Method Canonical syllables Total syllables
SpeechMark .22 (.19,.25) .50 (.47,.53)

de Jong & Wempe .24 (.20,.27) .65 (.62,.67)
Coath & Denham .15 (.12,.19) .41 (.37,.44)
Sphinx consonants .30 (.26,.33) .52 (.49,.55)

Sphinx vowels .27 (.24,.30) .57 (.55,.60)

2.3.4. Sphinx phone recognition

The fourth tool was the phone recognition tool from the open
source Sphinx speech recognition software [30]. We used
PocketSphinx, which has a mode that provides broad phonetic
transcriptions of audio input without performing word recog-
nition. The procedure is given at http://cmusphinx.
sourceforge.net/wiki/phonemerecognition. We
ran this in default configuration on each infant sound. We then
added up the instances of all consonant phones, excluding HH,
to match as closely as possible the instructions give to human
listeners not to consider syllables to be canonical when “h” was
the only consonant. We also added up all the instances of vowel
phones. Thus, the Sphinx phone recognition system yielded two
output counts, number of consonants and number of vowels,
which we used to try to predict human listener syllable counts.

The Sphinx phone recognition method relies on acoustic
models trained on adult American English speech. A previ-
ous study applied the tool to child speech (canonical speech-
like utterances only) and compared performance to human tran-
scriber consonant and vowel counts, with good correlations be-
tween the human transcriber counts and the Sphinx counts at
the recording level [31]. The work also showed a relationship
between the automatically obtained counts and child age, with
differences across different clinical groups. However, that work

2677



0 1 2 3

0
1

2
3

4
5

6
Machine vs. human syllable counts

Human-judged canonical syllable count

M
ac

hi
ne

-e
st

im
at

ed
 c

an
on

ic
al

 s
yl

la
bl

e 
co

un
t

Figure 1: Correspondence between machine-estimated canoni-
cal syllable counts and human listener counts.

did not assess how well the Sphinx consonant and/or vowel
counts would perform at identifying syllables or how it would
do when applied to all child vocalizations, not only the clearly
transcribable ones. It also focused on older children (approxi-
mately 13 to 47 months of age and older) than are the focus of
the present study.

2.4. Model training and evaluation

We trained a generalized additive model with four inputs: num-
ber of syllables per utterance estimated by each of the four
methods above plus utterance duration. The model thus had six
input variables: duration in ms, number of salience onsets, num-
ber of syllables based on the de Jong & Wempe algorithm, num-
ber of syllables according to the SpeechMark software, number
of consonants estimated by Sphinx, and number of vowels es-
timated by Sphinx. One model was trained to predict the num-
ber of canonical syllables in an utterance; a separate model was
trained to predict the number of syllables of any type. Leave-
one-child-out cross-validation was used to divide data into train-
ing and test sets.

Several pre-processing steps were performed. First, when
more than one human listener judged a given utterance, the av-
erage number of syllables across the listeners was used. Mean
syllable count averages were rounded to the nearest integer, and
canonical syllable counts of three or more were grouped into a
single category and total syllable counts of four or more were
grouped into a single category. This created four ordinal levels
for each syllable type count (0, 1, 2, and 3 for canonical sylla-
bles and 1, 2, 3, and 4 for total syllables of any type). Because
there were unequal numbers of utterances falling into each cat-
egory, the data from all count categories except for the most
frequent were resampled, repeating as many utterances as were
needed to create category sample sizes that were equal across
all categories and matched to the most frequent category. This
prevented the generalized additive model from becoming domi-
nated by a general bias toward the most frequent count category.
All five input variables were then converted to z-scores based on
the training set data prior to building the model. Principal com-
ponents analysis based on the scaled training set data was used
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Figure 2: Correspondence between machine-estimated total syl-
lable counts and human listener counts.

to pre-process the model inputs; based on pilot explorations, the
top three principal components were used. The resampling and
scaling were done separately for each prediction type and for
each training dataset in the leave-one-child-out cross-validation
procedure.

3. Results
3.1. Human syllable count inter-rater reliability

Human Listener 2 and Human Listener 3’s judgments were
strongly correlated, ρ = .74, p < .001 for canonical syllable
counts, and ρ = .70, p < .001 for total syllable counts, indi-
cating reasonable but not perfect inter-rater reliability on these
tasks. This provides a baseline against which the automated
methods can be compared.

3.2. Individual performance of existing syllable detection
methods

We tested separately how well each of the five syllable detec-
tion methods correlated with the average human listener total
syllable and canonical syllable counts. Results are given in Ta-
ble 1. All correlations were positive and statistically signifi-
cant. Across all the syllable/phone detection methods, corre-
lations with human listener total syllable counts were stronger
than correlations with human listener canonical syllable counts.
All correlations were weaker than human interrater correlations.

3.3. Reliability of syllable counts

It was possible that a weighted combination of the five sylla-
ble/phone detection methods would yield a better fit to human
judgments than any of the individual methods on their own. We
also thought that duration might play a useful role in predict-
ing human syllable counts. We therefore turn to the results of
the model that takes predicts human listener counts based on a
combination of all the individual methods plus duration. Re-
call that these results are based on leave-one-child-out cross-
validation test set performance. The combined machine-based
canonical syllable estimates were significantly but weakly cor-
related with the average human listener judgments,ρ = .29,
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Figure 3: The left plot shows the positive relationship between age and number of canonical syllables per utterance as judged by the
human listener. Each data point represents the average number of canonical syllables per utterance for a single child on a single
recording day. The right plot shows the relationship between age and number of canonical syllables per utterance at the day level as
estimated by the automated method. The automated method shows a pattern of increase in canonical syllables with age, replicating
what has been found with human listener judgments, both in the present dataset, as shown on the left, and in previous studies.

p < .001 (Fig. 1. Machine and human counts of syllables of any
type (canonical and non-canonical both included) were strongly
correlated, ρ = .70, p < .001 (Fig. 2). The figures show in-
creasing machine syllable counts as the human listener syllable
counts increase, with a bias on both tasks toward over-counting
in low-syllable utterances. The stronger ability to predict hu-
mans’ total syllable counts compared to prediction of specifi-
cally canonical syllable counts can be seen in the smaller error
bars in Fig. 2 compared to those in Fig. 1.

3.4. Correlation between syllable counts and age

We tested for a correlation between human syllable counts and
age, to ensure our data replicate the pattern found in previ-
ous studies. Indeed, we found that the average human-judged
canonical syllable count per utterance for a given child on a
given recording day strongly predicted that child’s age in days,
r = .59, p < .001 (left side of Fig. 3). The average human-
judged canonical syllable count per utterance divided by the to-
tal syllable count per utterance also shows a pattern of increase
with age, as expected from prior published studies, r = .54,
p < .001. Interestingly, although previous studies have not fo-
cused on increase in total number of syllables as a function of
age, we found this to also be a pattern in our data, albeit weaker
than the canonical rate trends, r = .36, p < .001.

We then asked whether the same pattern held when auto-
mated syllable counts (combined method) were used in place of
human counts. A pattern of increase in canonical syllables per
utterance with age was found, r = .37, p < .001 (right side
of Fig. 3). This is weaker than what we found with the human
judgments, but in the same direction and still very statistically
significant. The correlation between age and automated canon-
ical to total syllable ratio yielded very similar results, r = .38,
p < .001. This suggests that the automated methods may be
able to discern some differences between canonical and non-
canonical syllable types. Interestingly, in keeping with the auto-
mated method’s better performance matching human total syl-

lable counts, its ability to predict age based on total syllables
per utterance was similar to that obtained using human judg-
ments and similar to the combined automated method’s ability
to predict age based on canonical syllable measures, r = .32,
p < .001.

4. Discussion
We found a set of existing syllable detection algorithms to be ca-
pable of producing both total syllable counts and canonical syl-
lable counts that reliably correlated with human listener judg-
ments. When all methods were combined in a generalized ad-
ditive model, total syllable count reliability was comparable to
human inter-rater reliability. Reliability for canonical syllable
counts was lower and not comparable to human-human reliabil-
ity. Performance of the combined model on canonical syllable
counting was not superior to performance of the Sphinx conso-
nant count alone (Table 1).

Both our human listener judgments and our automated
method showed an increase in syllable counts with age. This
replicates the prior finding that infant canonical syllable pro-
duction increases in relative frequency from 4–18 months of age
(Oller et al., 1997). It demonstrates the validity of the automated
method as applied to the study of infant speech development.

Future work should investigate using the richer sets of fea-
tures available as part of the existing syllable detection methods.
Another exciting future direction would be to train machine-
learning-based (e.g. neural networks-based) ASR methods on
the infant sounds and human judgments provided here. These
may lead to better performance counting canonical syllables.
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