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Abstract
Automatic speech recognition systems generally produce un-
punctuated text which is difficult to read for humans and de-
grades the performance of many downstream machine process-
ing tasks. This paper introduces a bidirectional recurrent neu-
ral network model with attention mechanism for punctuation
restoration in unsegmented text. The model can utilize long
contexts in both directions and direct attention where necessary
enabling it to outperform previous state-of-the-art on English
(IWSLT2011) and Estonian datasets by a large margin.
Index Terms: neural network, punctuation restoration

1. Introduction
Most automatic speech recognition (ASR) systems output an
unpunctuated sequence of words. Restoring the punctuation
greatly improves the readability of transcripts and increases the
effectiveness of subsequent processing, like machine transla-
tion, summarization, question answering, sentiment analysis,
syntactic parsing and information extraction.

Punctuation restoration and a related task of segmentation
or sentence boundary detection have been extensively studied.

Some previous approaches have used textual features only,
enabling applications where audio is not available. Various
methods have been used, like n-gram models [1], conditional
random fields (CRFs) [2, 3], transition-based dependency pars-
ing [4], deep and convolutional neural networks [5]. Some have
treated the punctuation restoration as a machine translation task,
translating from unpunctuated text to punctuated text [6, 7].

On the other hand, there are methods that rely entirely on
prosodic or audio based features, such as pause durations be-
tween words, pitch and intensity [8, 9]. For example, a com-
bination of two neural networks has been used, where the first
network classifies input as speech or punctuation and the second
one predicts the punctuation type [9].

Both approaches have benefits — text based approach does
not require audio and has generally shown better results on ref-
erence transcripts, while prosody based models are more robust
to ASR system errors — but the combination of the two brings
further improvements [10, 11]. Pause durations between words
have been shown to be particularly helpful when combined with
textual features [8, 12]. Approaches for combining textual and
prosodic features can be roughly divided into two categories —
a single model that utilizes both types of features, and separate
models that are combined in various ways.

Single model approach has been used, for example, with
maximum entropy model [13, 14, 15, 16], statistical finite state
model [8], boosting-based classifier [10] and long short-term
memory (LSTM) recurrent neural network [17].

A common way to combine models is to pass the outputs
of the textual model along with prosodic features to the main
model that makes the final punctuation decision. For example,
language model posteriors can be treated as features by a deci-
sion tree [18], CRFs [19] or adaptive boosting algorithm [11].
Another option is to use prosodic posteriors as features for a
model that combines them with textual features, like in [20]
where deep neural network based prosodic model posteriors
were used as additional features in a text based CRFs classifier.
Prosodic and textual model posteriors can also be interpolated
[18, 12, 21, 10] or passed to a third model as features [22].

Combination of a separate textual and prosodic component
makes it straightforward to achieve a greater quality textual
model, as it is not limited to the availability of corresponding
audio and can be separately trained on a much larger amount
of text [22]. Single model methods can achieve the same goal
through adaptation or 2-stage training, where the model is ini-
tially trained on a large text corpus using textual features alone,
and then adapted on a smaller corpus where both textual and
prosodic features are available [17].

In [23], a multi-pass approach additionally refined a
prosody and text based CRFs result, by taking into account the
distance from the closest sentence boundary in both directions.

In this work we use two approaches. On the English dataset
we use text only, as prosodic features were unavailable to us
and the previous best result that we compare with. On the Es-
tonian dataset we use textual features in combination with a
prosodic feature. Similarly to the previous best method [17],
the only prosodic feature we use is the pause duration between
words, but other features can also be easily incorporated into
this model. We use a single model that is trained in two stages
to maximally utilize both text and prosody. The two-stage ap-
proach is similar to the one used in [17] where in the first stage
a large written text corpus is utilized for training textual fea-
tures, and then these features are combined with the pause du-
ration feature in the second stage when the model is trained on a
smaller pause annotated corpus. Although some of the previous
work (e.g. [6]) reported results on already segmented text, our
results are achieved on unsegmented text.

The novelty of our approach is that this is, to the best of our
knowledge, the first use of bidirectional recurrent neural net-
works (BRNN) [24] in combination with an attention mecha-
nism [25] for punctuation restoration in unsegmented text. The
source code of the model is publicly available 1.

The next section describes our approach in detail. Section 3
describes training strategies, models, data, metrics and results.
Section 4 concludes the paper.

1https://github.com/ottokart/punctuator2
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2. Method
Our model is a bidirectional recurrent neural network (BRNN)
[24] which enables it to make use of unfixed length contexts
before and after the current position in text.

In the recurrent layers we use gated recurrent units (GRU)
[26] that are well suited for capturing long range dependencies
on multiple time scales. These units have similar benefits as
LSTM [27] units while being simpler.

We incorporated an attention mechanism [25] into our
model to further increase its capacity of finding relevant parts of
the context for punctuation decisions. For example the model
might focus on words that indicate a question, but may be rel-
atively far from the current word, to nudge the model towards
ending the sentence with a question mark instead of a period.

To fuse together the model state at current input word and
the output from the attention mechanism we use a late fusion
approach [28] adapted from LSTM to GRU. This allows the at-
tention model output to directly interact with the recurrent layer
state while not interfering with its memory.

Next we describe in detail how our model processes the in-
puts to produce the outputs. At time step t the model outputs
probabilities for punctuations yt to be placed between the pre-
vious word xt−1 and current input word xt. As there is no
punctuation before the first word x1, the model predicts punc-
tuations only for words x2, . . . ,xT , where xT is a special end-
of-sequence token.

The sequence of one-hot encoded input words X =
(x1, . . . ,xT ) is first processed by a bidirectional layer consist-
ing of two recurrent layers with GRU units, where one recurrent
layer processes the sequence in forward direction and the other
in reverse direction. Both recurrent layers are preceded by a
shared embedding layer with weights W e. The state

−→
h t at

time step t of the forward recurrent layer is

−→
h t = GRU(xtW e,

−→
h t−1) (1)

where GRU is the gated recurrent unit activation function as
described in [26] with the exception of added biases. We use
tanh as the new hidden state nonlinearity φ. The state

←−
h t

of the reverse recurrent layer is computed similarly except the
input word sequence X is processed in reverse order. The bidi-
rectional state ht is then constructed by concatenating the states
of the forward and backward layers at time t:

ht = [
−→
h t,
←−
h t] (2)

So this layer learns representations for each input word xt that
depend on both the preceding and following context, hopefully
helping the model to better identify question indicating words
as this often depends on the context (e. g. ”This is what I do.”
vs. ”What do you do?”). Also, this gives the model more in-
formation to determine whether the current word starts a new
sentence or not.

The bidirectional layer is followed by a unidirectional GRU
layer with an attention mechanism. This layer processes the
bidirectional states sequentially and keeps track of the current
position in text, while the attention mechanism can focus on rel-
evant bidirectional context aware word representations before
and after the current position. The state st of the layer

st = GRU(ht, st−1) (3)

is late fused with the attention model output at which is com-
puted based on the previous state st−1 and bidirectional layer

yt

Late fusion

. . . st−1 st . . .

Attention

−→
h1

. . . −→
ht

. . . −→
hT

←−
h1

. . . ←−
ht

. . . ←−
hT

x1 . . . xt . . . xT

Figure 1: Description of the model predicting punctuation yt at
time step t for the slot before the current input word xt.

states H = (h1, . . . ,hT ) as described in [25]. The late fused
state f t

f t = atW fa ◦ σ(atW faW ff + htW fh + bf ) + ht (4)

is fed to the output layer producing the punctuation probabilities
yt at time step t

yt = Softmax(f tW y + by) (5)

The model described above is used for single stage training and
as the first stage in two-stage training. Graphical description of
the model can be seen in Figure 1.

For two-stage training, to incorporate pause duration and
adapt to target domain, the second stage discards the first stage
output layer and replaces it with a new recurrent GRU layer

zt = GRU([f t, pt],zt−1) (6)

which takes the concatenation of the late fusion state f t and the
pause duration pt before word xt as input. Vector zt is passed
to a newly initialized output layer, similar to 5. Only the newly
added parameters are trained during second stage training while
the first stage parameters are kept fixed. This worked better than
adapting all the parameters. The reason for that might be that as
the second stage training corpus is smaller, it does not contain
all the words that are in the model vocabulary. Therefore some
word embeddings are not updated while the rest of the model
changes, causing these embeddings to become less compatible
with the model.

3. Experiments
3.1. Training details

During training the weights are updated using AdaGrad [29]
with a learning rate of 0.02. The L2-norm of the gradient is
kept within a threshold of 2 by normalizing it every time this
threshold is exceeded [30].

Negative log-likelihood of the punctuation sequence is min-
imized during training. During testing the punctuation with
highest probability according to model output is chosen. We
also experimented with giving the previously predicted punctu-
ations as an input to the model and using beam search to find
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the best sequence of predictions, but this caused the model to
accumulate mistakes and performed worse.

The first stage of two-stage training is finished when the
validation perplexity gets worse for the first time. The second
stage of two-stage training and single stage training is com-
pleted when the validation perplexity has not improved in the
last 5 epochs. Weights are initialized according to the normal-
ized initialization from [31] and biases are initialized to zeros.
All hidden layers consist of 256 units.

The models are implemented using Theano [32, 33] and
trained on GPUs. The input sequence is partitioned into 200
word long slices. Each slice always begins with the first word of
a sentence. If a slice ends with an unfinished sentence, then the
unfinished sentence is copied to begin the next slice. The out-
put sequence is one element shorter as no punctuation is placed
before the first word. Slices are also used during testing, but
unlike during training, the sentence boundaries predicted by the
model are used. To reduce training time, the slices are shuffled
before each epoch and arranged into mini-batches of 128 slices.

The Estonian model has an input word vocabulary of 100K
most frequent words in the training corpus, plus the end-of-
sequence and out-of-vocabulary token. The vocabulary of the
English model is constructed by taking all words that occur at
least twice in the training corpus, resulting in a vocabulary of
27 244 words and the 2 special tokens.

The output vocabulary consists of the predicted punctua-
tions (comma, period and question mark) and a no punctuation
token. Other punctuation symbols are either mapped to one of
the punctuations in our output vocabulary or removed from cor-
pora. For Estonian dataset, exclamation marks, semicolons and
colons are mapped to periods and all other punctuation sym-
bols are removed. In the English dataset exclamation marks
and semicolons are mapped to periods, while colons and dashes
are mapped to commas.

3.2. Models

On the English dataset we use the model described in Figure 1
(T-BRNN). Since the models in [5] used pre-trained word vec-
tors, we also train one T-BRNN model with embeddings initial-
ized to the same pre-trained word vectors 2 (T-BRNN-pre) for
comparison.

The Estonian dataset has out-of-domain and pause anno-
tated data available. Therefore we train our model using the
two-stage approach — first training on the large out-of-domain
corpus and then adapting on the pause annotated corpus. We
train the two-stage Estonian model both with (TA-BRNN-p)
and without (TA-BRNN) utilizing pause durations. Analo-
gous models (TA-LSTM-p with pauses and TA-LSTM without
pauses) were also trained in [17].

The model that holds the previous best result on Estonian
has publicly available source code, so we train the first stage
part of it on English for comparison (T-LSTM). We used the
same hyperparameters for T-LSTM that were used in [17]. Two-
stage training requires out-of-domain data which was not used
by [5] and would give our models an unfair advantage.

3.3. Datasets

3.3.1. Estonian

The Estonian dataset we use consists of two parts — a 334M
word out-of-domain written text (e. g. newspapers and WWW)

2http://nlp.stanford.edu/projects/glove/

corpus and a 1M word in-domain pause annotated speech tran-
scripts (broadcast news and conversations, lectures) corpus.
The development and test set consist of 27K and 30K words
respectively. The best result so far on this dataset was obtained
by [17] and the details of the dataset can be found there.

3.3.2. English

Experiments on English are performed on the IWSLT dataset
which consists of TED Talks transcripts. The current best result
on this dataset was achieved by [5]. We use the same train-
ing, development and test set to train and test our models. The
training and development set consist of 2.1M and 296K words
respectively and come from the IWSLT2012 machine transla-
tion track training data. IWSLT2011 reference and ASR test set
are used for testing and contain about 13K words each. More
detailed description of the dataset can be found in [5].

3.4. Metrics and results

All models are evaluated in terms of per punctuation and over-
all precision, recall and F1-score. We also report the overall
slot error rate (SER), as F1-score has been shown to have some
undesirable properties [34]. All comparisons in this section are
in terms of absolute differences.

On the Estonian test sets (Table 1), it is clear that our newly
proposed BRNN models outperform the previous best LSTM
based models despite having to deal with an additional type of
punctuation. Our best model (TA-BRNN-p) achieves an over-
all F1-score improvement by 2.5% on reference text and 1.8%
on ASR output, when compared to the the previous best (TA-
LSTM-p). SER is reduced by 4.4% and 2.6% on reference
and ASR text respectively. The improvements are even larger
and the comparison more fair when we map all question marks
to periods (Q=P). Detailed metrics show that the TA-BRNN-p
model is better than TA-LSTM-p in all aspects except comma
restoration precision, but the difference is small. The gap be-
tween the text-only models (TA-BRNN and TA-LSTM), that
did not use the pause duration information during second stage
training, is even bigger — F1-score improves by 3.8−4.5% and
SER by 3.4− 6.4%. The improvements with the text only TA-
BRNN model seem to mostly come from its much higher recall
for periods (by 18.1 − 21.2% higher than TA-LSTM) without
sacrificing precision. As the previous best model (TA-LSTM-
p) used only the next word and the preceding context and many
commas in Estonian depend on a very local context (the next
word), we conclude that the improved period restoration is the
benefit of our model’s ability to flexibly utilize the entire con-
text in both directions.

The results on English test sets (Table 2) show even larger
differences. The overall F1-score improves by 8.9% on refer-
ence text and by 10.5% on ASR output when comparing our
T-BRNN model to the best baseline (DNN-A). The best base-
line in terms of SER is the DNN model from [5] and the T-
BRNN model reduces it by 11.6% on reference text and by
15.5% on ASR output. The T-BRNN model shows improve-
ments in all metrics for all punctuation types. The biggest
difference is in the question mark restoration performance, as
the models from [5] were unable to restore any question marks
thanks to a limited fixed size context (3 words before and 2
words after the slot) that rarely included the question indicat-
ing words that often are in the beginning of the sentence. Our
newly proposed T-BRNN model and the T-LSTM model from
[17] were both able to restore question marks, as their preced-
ing context length is not limited to a fixed size. The T-LSTM

3049



Table 1: Results on Estonian reference transcripts and ASR output test set. T-LSTM-p, TA-LSTM and TA-LSTM-p are the best models
from [17], TA-BRNN and TA-BRNN-p are our models, and (Q=P) indicates that question marks have been mapped to periods.

Model COMMA PERIOD QUESTION OVERALL
Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 SER

T-LSTM-p [17] 78.5 63.3 70.1 68.9 59.8 64.0 - - - 75.6 62.3 68.3 52.8
TA-LSTM [17] 74.5 72.2 73.3 62.8 42.9 51.0 - - - 71.9 63.9 67.7 52.5
TA-LSTM-p [17] 82.3 69.9 75.6 67.7 76.8 72.0 - - - 77.3 71.9 74.5 43.7

Ref. TA-BRNN 75.1 75.5 75.3 65.6 64.1 64.8 63.6 43.8 51.9 72.5 71.9 72.2 46.1
TA-BRNN-p 81.6 75.4 78.4 72.5 77.0 74.7 59.1 48.7 53.4 78.6 75.4 77.0 39.3
TA-BRNN (Q=P) 75.1 75.5 75.3 67.4 64.7 66.0 - - - 73.0 72.4 72.7 45.6
TA-BRNN-p (Q=P) 81.6 75.4 78.4 73.8 77.3 75.5 - - - 79.2 76.0 77.6 38.7
T-LSTM-p [17] 69.9 57.3 63.0 57.3 49.0 52.8 - - - 66.2 55.0 60.1 68.5
TA-LSTM [17] 64.5 64.6 64.6 48.8 32.2 38.8 - - - 61.3 55.5 58.2 72.1
TA-LSTM-p [17] 71.1 62.5 66.5 54.9 61.2 57.8 - - - 65.7 62.1 63.8 65.5

ASR TA-BRNN 63.9 67.9 65.8 54.0 50.3 52.1 48.8 29.9 37.0 61.3 62.6 62.0 68.7
TA-BRNN-p 69.1 66.8 68.0 59.7 61.5 60.6 51.2 31.3 38.9 66.3 64.9 65.6 62.9
TA-BRNN (Q=P) 63.9 67.9 65.8 54.9 50.2 52.4 - - - 61.6 62.9 62.2 68.4
TA-BRNN-p (Q=P) 69.1 66.8 68.0 60.6 61.1 60.8 - - - 66.6 65.2 65.9 62.6

Table 2: Results on English reference transcripts and ASR output test set. DNN, DNN-A and CNN-2A are the best models from [5],
T-LSTM is first stage model from [17] that we trained on the English dataset, and T-BRNN and T-BRNN-pre are our models.

Model COMMA PERIOD QUESTION OVERALL
Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 SER

DNN [5] 58.2 35.7 44.2 61.6 64.8 63.2 0 0 - 60.3 48.6 53.8 62.9
DNN-A [5] 48.6 42.4 45.3 59.7 68.3 63.7 0 0 - 54.8 53.6 54.2 66.9

Ref. CNN-2A [5] 48.1 44.5 46.2 57.6 69.0 62.8 0 0 - 53.4 55.0 54.2 68.0
T-LSTM [17] 49.6 41.4 45.1 60.2 53.4 56.6 57.1 43.5 49.4 55.0 47.2 50.8 74.0
T-BRNN 64.4 45.2 53.1 72.3 71.5 71.9 67.5 58.7 62.8 68.9 58.1 63.1 51.3
T-BRNN-pre 65.5 47.1 54.8 73.3 72.5 72.9 70.7 63.0 66.7 70.0 59.7 64.4 49.7
DNN [5] 47.2 32.0 38.1 59.0 60.9 60.0 0 0 - 54.4 45.6 49.6 73.3
DNN-A [5] 41.0 40.9 40.9 56.2 64.5 60.1 0 0 - 49.2 51.6 50.4 79.2

ASR CNN-2A [5] 37.3 40.5 38.8 54.6 65.5 59.6 0 0 - 46.4 51.9 49.1 83.6
T-LSTM [17] 41.8 37.8 39.7 56.4 49.3 52.6 55.6 42.9 48.4 49.1 43.6 46.2 83.7
T-BRNN 60.0 45.1 51.5 69.7 69.2 69.4 61.5 45.7 52.5 65.5 57.0 60.9 57.8
T-BRNN-pre 59.6 42.9 49.9 70.7 72.0 71.4 60.7 48.6 54.0 66.0 57.3 61.4 57.0

model showed the lowest period restoration scores, indicating
that looking further than one word into the following context
is important for sentence boundary detection. The T-BRNN
model showed improvements despite the fact that DNN, DNN-
A and CNN-2A used an external source of information in the
form of pre-trained word vectors (trained on 6B tokens). When
we use the same word vectors as an initialization for our word
embeddings, then we get further improvements and achieve our
best result (T-BRNN-pre).

The comparison of the Estonian and English results reveals
that comma restoration is a much more difficult task in English
than it is in Estonian. This does not come as a surprise, as many
commas in Estonian can be restored by following relatively sim-
ple rules based on the next word. Although there is a big dif-
ference in question mark restoration performance as well, it is
hard to make conclusions as they are too rare in both test sets.

To better understand the individual contributions of bidirec-
tionality and attention, we trained additional models on English
with either of the components removed. Bidirectionality turned
out to be the biggest factor, as removing the forward context
caused the performance of all punctuation marks (especially
periods and question marks) to drop. Removing attention had
much smaller effect, hurting mostly question mark restoration.

4. Conclusions
This paper presented a bidirectional recurrent neural network
with attention mechanism for restoring commas, periods and
question marks in unsegmented transcribed speech. Both a
purely textual approach and an approach combining textual fea-
tures with prosodic information were used. Experiments on
Estonian and English showed improvements for all punctua-
tion types compared to the state-of-the-art. The overall F1-
score was improved by 1.8−10.5% absolute and slot error rate
was reduced by 2.6 − 15.5%. The biggest improvements were
achieved when comparing text-only models.

Future research includes the use of a richer set of prosodic
features, training an English model on a larger dataset, and ex-
ploring joint punctuation and capitalization models.
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