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Abstract
Recently it has been argued that speakers use conventionalized 
forms to express different prosodic attitudes [1]. We examined 
this by looking at across speaker consistency in the expression 
of auditory and visual (head and face motion) prosodic 
attitudes produced on multiple different occasions. 
Specifically, we examined acoustic and motion profiles of a 
female and a male speaker expressing six different prosodic 
attitudes for four within-session repetitions across four 
different sessions. We used the same acoustic features as [1] 
and visual prosody was assessed by examining patterns of 
speaker’s mouth, eyebrow and head movements. There was 
considerable variation in how prosody was realized across 
speakers, with the productions of one speaker more 
discriminable than the other. Within-session variation for both 
the acoustic and movement data was smaller than across-
session variation, suggesting that short-term memory plays a 
role in consistency. The expression of some attitudes was less 
variable than others and better discrimination was found with 
the acoustic compared to the visual data, although certain 
visual features (e.g., eyebrow brow motion) provided better 
discrimination than others. 
Index Terms: expressive speech, audiovisual prosody, 
prosodic attitudes 

1. Introduction 
Speakers convey much more than the information associated 
with their words. This is because speech also conveys 
expressive information, e.g., about emotions and attitudes. 
This expressive aspect of speech can be transmitted by speech 
sounds, and when speakers can see each other, also visually 
(e.g., face and head motion). Understanding how speech 
conveys emotion and attitude has practical implications for 
human-machine communication because such can help in 
deciphering a speaker’s message. That is, taking account of 
expressive speech can help an automatic system determine 
such things as what the speaker wants to make prominent, or 
whether the speaker is serious or not. Furthermore, effective 
auditory-visual speech synthesis requires knowledge of how to 
best express emotion and attitude. 
Research on expressive speech generally tends to consider 
linguistic prosody “the organizational structure of speech" [2], 
separately from paralinguistic prosody that concerns emotions 
and attitudes. Ohala [3] (1996) proposed that the latter two 
categories should also be considered separately. Emotional 
prosody, he argued, is grounded in adaptive processes, where 
either the transmission of a signal has survival value or where 
a signal ‘leaks’ from a beneficial physiological state; whereas 

attitudes “do not confer obvious survival benefit to the signaler 
and are probably acquired, i.e., learned”.  
Ohala considered this proposed difference in the aetiology of 
emotion and attitudes important for how well-established and 
characteristic the signaling of such will be. Emotional 
expressions, he suggested, are likely to be found cross-
culturally, whereas the expression of attitudes “are likely to 
vary considerably from culture to culture and perhaps even 
from one individual to another”. Moreover, he proposed that in 
order for attitudes to be appropriately communicated, they 
would need to be contextualized. 
Somewhat at odds with this proposal are the suggestions of a 
recent study by Hellbernd and Sammler [1] where it was 
argued that prosodic forms associated with attitude are highly 
conventionalized and can be appropriately realized even 
without context (i.e., as single word or even nonsense word 
utterances). It should be noted that [1] distinguished prosodic 
cues for conveying intentions from those related to a speaker’s 
attitude. Here, we use the term prosodic attitude to include the 
prosodic cues for attitudes as well as those involved in 
conveying intentions. 
The argument that [1] made was in part based on the finding 
that the acoustic patterns of a single word spoken 8 times in a 
single session with six prosodic attitudes can be readily 
distinguished using Linear Discriminant Analysis (LDA). It 
was suggested that the high accuracy of the classification 
implies that there was a reasonable consistency of the 
realization of the prosodic cues across speakers (although this 
was not explicitly tested).  
The current experiment followed up this aspect of [1] by 
specifically investigating the consistency and stability of 
speaker prosodic realizations. To do this we used the same 
stimulus and prosody induction procedures and compared the 
prosody profiles of a female and male speaker over four 
within-session repetitions across four different occasions. 
Unlike [1], we also examined visual (head and face motion) 
spoken prosody. 

2. Method

2.1. Participants 
A female and male native speaker of Australian English (both 
23 years old) took part as speakers. Similar to [1], our 
participants were non-actors as these renditions are more 
representative of typical language use compared to those of 
actors. That is, actors’ prosodic patterns may diverge from 
those used in standard conversation. Both participants were 
familiar with making auditory and video speech recordings. 
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2.2. Equipment

2.2.1. Image/motion capture 

3D data was captured and constructed using a Carmine 1.09 
close range sensor (0.35m - 1.4m).  The spatial x/y Resolution 
was 640 x 480 (VGA) (2-Sigma Values) at 0.5m = 0.9 mm; 
the depth Resolution (2-Sigma Values) at 0.5m = 0.1 cm. The 
depth Image Field-of-View was Horizontal at 0.5 m = 53.6 
degrees and Vertical at 0.5 m = 45 degrees. In addition, color 
Image sequences were captured at 640 x 480 (VGA). 

2.2.2. Image/motion registration and processing

Faceshift Studio® 2014 facial motion software was used to 
register and process the 3D sensor data (see procedure below). 
Auditory speech was recorded using this software from an 
AKG C417 PP professional lavalier microphone input to a 
Roland Duo capture EX soundcard. The recording sessions 
took place in a test room lit with two Bowens UNI-LITE 
BW3370 flood fill lights (with semi opaque diffusers). 

2.3. Materials 
The two speakers to express the spoken word “beer” with six 
different communicative intentions or attitudes: criticism, 
doubt, naming, suggestion, warning, and wish.   

2.4. Procedure 

2.4.1. Recording 
Each speaker was recorded individually. Speakers were seated 
in a quiet room with the Carmine 1.09 close range sensor 
positioned directly in front at face level and at approximately 
0.6 m distance (see Figure 1). Prior to the test session, a 
custom specific visual expression model for each individual 
was constructed. This model consists of 51 blend-shapes that 
are captured as an individual produces different training 
postures (by posing 23 face postures).  
In the test session proper, the Faceshift acquisition was 
controlled by an operator in a separate control room who 
ensured that the participants were looking directly sensor 
throughout the capture performance. The different prosodic 
attitudes were elicited using the same procedure as [1]. That is, 
to elicit the prosodic attitudes the speaker was presented with 
and required to read short scenarios that described a situation 
in which she/he interacted with an interlocutor (see [1] for 
details). For each new prosodic attitude, the speaker uttered an 
initial sentence of the relevant scenario and was encouraged to 
freely vocalize until she/he felt ready to begin saying the test 
word. In each session this word was said four times in each 
prosodic attitude. In addition, two ‘wag’ trials, where the 
participant moved her/his head from side-to-side and up-and-
down, were performed to establish the centre of head rotation 
(used in the analysis of the visual prosody). Each speaker 
participated in four sessions.  

2.4.2. Data Processing 
The quantification of speech related articulatory movements:
Faceshift uses an input device (here a Carmine 1.09 close 
range sensor) to construct a depth map by analysing a speckle 
pattern of infrared laser light. Virtual marker positions can be 
tagged to this depthmap and used to parameterize motion. 
Here we exported the FaceRobot® virtual marker set in c3d 

format and selected a subset of markers to use in a data 
reduction process (see Figure 1). 

Figure 1: A depiction of the virtual marker positions 
exported in c3d format from Faceshift and the subset 
of markers used for the gPCA (shown in red in the left 
panel). The right panel shows the tool used to confirm 
the gPC 3D reconstruction (moving the sliders, bottom 
right, showed the influence of each PC).

The data from the three virtual markers on the chin were used 
to quantify Jaw Opening (constrained to the Z axis); the data 
from the 8 mouth virtual markers were used quantify  Mouth 
opening (constrained to the Z axis) and Lip rounding (all three 
axes). The data from the four eyebrow markers were used to 
define Eyebrow motion (Z axis) and the two markers on the 
sides of the head and one on nose-bridge were used to define 
Rigid motion (pitch, yaw and roll rotation and translation).  
Given the high dimensionality of the recorded data, 
dimensionality reduction was performed. Guided principal 
component analysis (gPCA, [4]) was used for the non-rigid 
data. This style of PCA employs linear decomposition to 
extract a set of a priori defined components representing 
biomechanically plausible articulatory control parameters (six 
components are typically sufficient to explain the majority of 
articulatory data [5]). 
The shape-normalised (first frame subtracted) motion data was 
processed using gPCA to reduce the dimensionality of the data 
set to eight non-rigid components, along with three rigid 
translations and three rigid rotations (pitch, roll and yaw) of 
the whole head. To minimise the overrepresentation of 
particular marker configurations (e.g., the neutral position at 
the start and end of each utterance), a database of unique 
movements was generated. Using the ‘wag’ trials, the six rigid 
motion parameters around the estimated centre of rotation 
were determined (using the quaternion method) and extracted 
from the database. The remaining non-rigid movements were 
then analysed applying gPCA. The gPCA solutions were 
inspected in 3D space using a tool in which the influence of 
each PCA was visualized. Following inspection, the gPCA 
parameters were output as vectors that quantified the 
contribution of a gPCA per frame (time).  
Quantification of acoustic features: The same features as used 
in [1] were used, i.e., a measure of stimulus duration, mean 
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intensity, harmonics-to-noise ratio (HNR), mean fundamental 
frequency (f0), pitch rise and the standard deviation of the 
spectrum. These data were obtained by using Praat using 
customized scripts. 
Quantification of motion features: From the PCA curves for 
mouth opening; lip rounding; eyebrow up/down and pitch and 
yaw rigid head rotation, the following parameters were 
derived: duration of motion; magnitude of the largest peak; 
magnitude of the largest trough; time when the peak occurred; 
time when the trough occurred, the difference between the 
magnitude of the peak and trough, the highest velocity motion 
and the coefficient of variation (SD/mean). 

2.4.3. Discriminant analysis 
A linear discriminant analysis (LDA) was employed (as in [1]) 
using the seven acoustic features as independent variables and 
the prosodic categories as the dependent variable (class 
labels). Analyses were cross-validated using a jack-knife 
procedure. We also used Recursive Partitioning (the RPART 
package in R that incorporates cross validation) to determine 
how the data could best be partitioned based on the values of 
different classes. This analysis was then used for feature 
selection for an LDA with reduced features.  
The same basic analyses were applied to the motion data. Only 
in this case, an LDA was calculated for each of the five PCA 
curves (mouth opening; lip rounding; eyebrow up/down; and 
pitch and yaw rigid head rotation). Following this, the data 
from all curves was combined and Recursive Partitioning used 
to select the features that capture most of the variation in the 
data. These features were used in a reduced feature LDA. 

2.5. Results 
Acoustic data. The LDA on all the acoustic features classified 
the correct attitude category for speaker one at 81% correct 
and for speaker two at 78%. The LDA solutions for the first 
and second discriminant functions for speaker one and two are 
shown in Figure 2. 
For speaker one, recursive partitioning revealed that pitch rise; 
mean f0; centre of gravity and HNR best partitioned the data 
into the attitude categories (when only these data were used 
discrimination of the LDA was the same). For speaker two, 
pitch rise; mean f0; HNR and duration best partitioned the data 
into the attitude categories. 
Motion data. An LDA was conducted on the motion data for 
each speaker and each face/head movement (i.e., mouth, lips, 
eyebrow, head pitch and head yaw). These single motion 
feature LDAs produced correct classification performance 
from 52% to 62% (with rigid head pitch rotation and eyebrow 
motion better than lip rounding). 
Combining all motion features and using recursive partitioning 
to select features produced better classification performance. 
For speaker one, the features that measure the magnitude of 
the largest peak for mouth, lip, eyebrow, rigid head pitch and 
rigid head yaw, and the duration of motion produced the best 
classification performance (64% correct). 
For speaker two, the difference between the magnitude of the 
peak and trough for mouth motion, and the same for rigid head 
pitch, the magnitude of the largest peak for rigid head pitch 
and the time at which the peak in rigid head yaw produced the 
best classification performance (78% correct). 

Figure 2: Acoustic LDA results for both speakers using 
a reduced set of features as discovered by recursive 
partitioning.

Combination of the best acoustic and motion features 
produced LDA performance similar to the acoustic features 
alone. For speaker one, the combination of pitch rise; mean 
F0; HNR; largest peak for rigid head pitch and auditory 
duration resulted in correct classification performance of 81%. 
For speaker 2, the recursive partitioning selected only auditory 
features and these resulted in a classification performance of 
78% correct. 
In addition to LDA, we also examined the consistency of 
performance within and across recording sessions for the 
acoustic and motion data. For the acoustic data, we examined 
the variation in features’ scores within a session compared to 
between sessions. When collapsed across all acoustic features 
and both speakers, the within-session variation was smaller 
than the between-session one, F(1,82) = 5.61, p < 0.05.  
We quantified the degree of similarity/stability of the motion 
data in two ways. First, to examine temporal changes, we used 
Dynamic Time Warping (DTW) [6]. Second, to examine 
amplitude differences, we normalized the durations and then 
measured variation of the motion from the mean (expressing 
this as the area of a 1 SD envelope around the mean). 
In terms of the first measure, dynamic time warping (DTW) is 
a procedure that provides a measure of comparison of two 
series of data points (inherent distance). For example, DTW 
can expand or compress one time series to resemble another 
one and by summing the distances of individually aligned 
elements to produce an inherent distance (cost) between the 
two.  
We compared the warping cost for each of the principal 
components (PCs) motions curves for all pairs of within-
session utterances and then compared this to all between-
sessions pairs (time-series were mean-centered to avoid the 
effect of off-sets). A summary of the mean inherent distance 
costs is shown in Figure 3. 
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Figure 3: Mean Dynamic warping cost (inherent 
distance) for within versus between session utterance 
pairs for each person.

As can be seen in Figure 3, warping costs were smaller for 
within-session utterances compared to between-session ones. 
Five Bonferroni corrected within- versus between-session 
repeated measure ANOVAs were conducted (one for each 
movement type). These were all significant, mouth motion: 
F1(1,276) = 12.43,, p < 0.05; lip rounding: F(1,276) = 7.21, p 
< 0.05; eyebrow motion: F(1,276) = 18.65, p < 0.05; rigid 
head pitch rotation: F(1,276) = 46.72 and rigid head yaw 
rotation: F(1,276) = 32.74, p <0.05. 
The second method we used for quantifying the stability of 
utterance motions was to examine differences in the amplitude 
of each principal component curve while normalizing for time. 
This was done using the following procedure: 

a) Normalize the duration of all utterances to a fixed 
duration of 20 frames (by linear interpolation). 

b) Construct an average for each sentence and each 
speaker. 

c) Calculate the area of a one standard deviation (SD) 
ribbon about the mean. This latter value was then used as an 
index of variability (see Figure 4 for an example). 

Figure 4: An example of the variability in the 
magnitude of the contribution of different PC for each 
speaker. The red curve depicts the mean; the blue 
curve shows a 1 SD ribbon around the mean.

Figure 5 presents a summary of the amplitude variability data 
for each motion component across the two speakers. As can be 
seen, there was considerable variation across the speakers.  

Figure 5: Average area of 1 SD ribbon around the 
mean of each of the time normalized PC curves for 
each person.

What is interesting is that speaker one had more variability for 
face motion (i.e., the mouth and to some extent the eyebrows), 
whereas speaker two showed more variability for head 
movements (particularly rigid head pitch rotation). An 
ANOVA comparing mean SD area differences between 
speakers for all movement types was not significant, F(1,36) = 
3.42, p = 0.07; an exploratory analysis comparing area 
differences by speaker for face versus head movement 
produced a significant interaction, F(1,36) = 6.54, p < 0.05. 

3. Discussion 
Following-up a recent study [1] that claimed that the 
expression of prosodic attitudes has been conventionalized and 
so are consistent across people, we explicitly examined the 
production of six attitudes across speaker and within- and 
across session-variation. We measured acoustic properties 
along with face and head movements for a single spoken word 
‘beer” (as used in [1]). Extending the examination to face and 
head motion is important because prosodic attitudes are 
expressed both by changes in acoustic features and by changes 
in face and head motion. 
We showed that there was considerable variation in how 
prosody was realized across two speakers. Also within-session 
variation for both the acoustic and movement data was smaller 
than across-session variation, indicating that short-term 
memory may play a role in consistency. 
It should be noted that the current correct LDA classification 
performance of acoustic data was worse than in [1] where 
almost perfect classification was achieved. This may have 
been due to the smaller data set used ([1] had two words and 
two non-word stimuli and eight repetitions). We are currently 
collecting data from more speakers and more words. This is 
important, because there may be reliable difference in how 
attitudes are expressed by, for example, women and men. 
We also need to run a perception study, as differences in how 
a word is expressed may not necessarily have a one-to-one 
relationship with what is perceived. For instance, [7] found 
variable realization of prosody, but [8] good recognition. 
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