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Abstract

Peer-led team learning (PLTL) is a model for teaching STEM
courses where small student groups meet periodically to col-
laboratively discuss coursework. Automatic analysis of PLTL
sessions would help education researchers to get insight into
how learning outcomes are impacted by individual participa-
tion, group behavior, team dynamics, etc.. Towards this, speech
and language technology can help, and speaker diarization tech-
nology will lay the foundation for analysis. In this study, a new
corpus is established called CRSS-PLTL, that contains speech
data from 5 PLTL teams over a semester (10 sessions per team
with 5-to-8 participants in each team). In CRSS-PLTL, every
participant wears a LENA device (portable audio recorder) that
provides multiple audio recordings of the event. Our proposed
solution is unsupervised and contains a new online speaker
change detection algorithm, termed G* algorithm in conjunc-
tion with Hausdorff-distance based clustering to provide im-
proved detection accuracy. Additionally, we also exploit cross
channel information to refine our diarization hypothesis. The
proposed system provides good improvements in diarization er-
ror rate (DER) over the baseline LIUM system. We also present
higher level analysis such as the number of conversational turns
taken in a session, and speaking-time duration (participation)
for each speaker.

Index Terms: LENA, Naturalistic Audio Analysis, Speaker Di-
arization, Peer-led Team Learning (PLTL), Social Signal Pro-
cessing.

1. Introduction
Peer-led team learning (PLTL) is a strategy used for improving
learning outcomes in group settings for STEM students. Each
team is led by a student who has already completed the course
and is familiar with the course learning goals and/or challenges.
The team lead coordinates the discussion on solutions of a given
set of questions in study sessions. There is typically weekly
study sessions held throughout the semester. PLTL is a pop-
ular approach and has been adopted by various universities at
the undergraduate level. Additionally, education researchers
have studied various aspects of PLTL to understand its impact
on student’s knowledge measured in terms of their success in
academic programs [1, 2]. Typically, such research studies use
control groups (by comparing students who do and do not par-
ticipate in PLTL) and outcome metrics such as course grades
or potentially opinions surveys to understand the educational
impact. Here, analyzing actual student-to-student voice interac-
tion in study sessions can help develop a richer understanding
of how student success is related to participation, engagement,
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group behavior, team lead, benefits ezc.. However, this would
require analyzing large quantities of data and the use of speech
and language processing tools would be especially beneficial.

In this study, we explore the utility of speaker diariza-
tion technology in measuring simple communication metrics
for PLTL sessions. Specifically, we describe a new corpus
called CRSS-PLTL that was developed to facilitate this study.
In CRSS-PLTL, we collected longitudinal data from 5 PLTL
teams for one semester. Every PLTL session lasted for about 80
minutes where each team member wore a LENA audio record-
ing device. Hence, the corpus contains multi-channel audio
data for all sessions. This is different from typical diarization
research that focuses on data collected using a single or mul-
tiple fixed far-field microphones [3, 4, 5]. It is common for
students to physically move during PLTL sessions(e.g., walk-
ing to whiteboard to solve problems) as well as breaking-up
into smaller groups for discussion. The speaking style is spon-
taneous and casual. Short conversation turns and overlapped
speech are often encountered. All these factors make speaker
diarization challenging for these scenarios.

Speaker diarization systems have been extensively re-
searched, often for specific tasks [6, 7, 8, 9]. Both super-
vised and unsupervised methods have been explored. Quiet re-
cently, some researchers have suggested a method for speaker
diarization using Restricted Boltzmann Machines [10]. The un-
supervised methods for classification and segmentation of audio
data has attracted attention in recent years [11]. Among multi-
stream diarization, meeting recordings have been analyzed by
combining MFCC and TDOA features with various segmenta-
tion and clustering algorithms [3, 4, 5]. In this study, we pro-
pose an unsupervised system for diarization suitable for study-
ing PLTL groups. Particularly, we propose new unsupervised
methods for speaker change detection and speaker clustering.
In our experiments, we compared the proposed method with the
LIUM diarization system. The proposed method in this study
achieves more than 10% absolute reduction in diarization error
rate (DER) over LIUM for CRSS-PLTL data. Finally, we also
use the diarization information to compute downstream metrics
such as the number of conversational-turns taken and partici-
pation, and discuss how such metrics can assist in automatic
analysis of PLTL groups.

2. Proposed System

Fig. 1 shows the proposed system. As shown in the figure, each
PLTL team member wears a LENA audio recorder unit (that
essentially acts as a close-talk microphone). Therefore, each
session yields multi-channel audio data where the number of
channels was equal to the number of participants. This makes
CRSS-PLTL corpus somewhat different from corpora typically
used for diarization research where fixed far-field microphones
are used for audio capture. This difference allows us to solve
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Figure 1: In CRSS-PLTL, LENA audio recorders were worn by each team member for the entire session, that yields multi-channel audio
data. The proposed speaker diarization system uses TO-Combo-SAD [12] to remove non-speech segments, and then uses Unsupervised
G? algorithm along with Hausdorff-distance based clustering to perform speaker change detection and clustering, respectively.

the overall diarization problem by solving primary speaker (per-
son wearing the LENA device) vs. secondary speaker (all other
speakers) detection problem for each audio stream. In other
words, we were always solving a two-speaker diarization prob-
lem for every channel (we were interested in detecting the pri-
mary speaker, and categorize all other speakers as secondary).
The overall diarization information can now be generated by
merely combining primary speaker hypothesis from each au-
dio channel. As seen in Fig. 1, Speech Activity Detection
(SAD) is first performed to separate non-speech from speech.
In this study, we used Threshold Optimized Combo-SAD (TO-
Combo-SAD) for SAD [13, 12]. In the next step, the speech
data is processed by the unsupervised G® algorithm that de-
tects speaker change points and provides this information to
the Hausdorff distance-based clustering algorithm that finds pri-
mary and secondary clusters. In what follows, we describe these
algorithms in greater detail.

2.1. Unsupervised G Algorithm

We propose a new method for unsupervised speaker change de-
tection based on the work discussed in [14]. Using the theoreti-
cal foundation provided in [14], we investigated a large number
of features and feature processing steps, and found a method
that works well in practice for our data. We first extracted
Mel-frequency cepstral coefficients(MFCCs) along with delta
and delta-delta features (39-dimensions). The features were ex-
tracted for 40ms speech frames with 10ms skip rate. Addition-
ally, a 320-dimensional real cepstrum of the linear prediction
residual (RCLPR) is also used, since it models speaker-specific
excitation information [15]. The 320 RCLPR features are then
transformed with 51-point 1-D discrete cosine transform (DCT)
to decorrelate the feature subset. Finally, the MFCCs and RCL-
PRs features are fused to form the final 90-dimensional fusion
feature, that was used for speaker change detection.

Now, we describe the algorithm for speaker change detec-
tion. Let U and V be sets of fusion feature vectors taken
from two successive 1-second time segments around time 't’
(we chose 1-second time window because we were interested
in detecting short conversation turns, but this value can be ad-
justed as per application). Let W = [U, V] be the feature
vectors of both frames. For detecting speaker change, we de-
velop a binary hypothesis test, Ho vs. Hi, where Hy denotes
no speaker change at time ‘¢, and H; denotes speaker change
at time ‘. To facilitate the test, we build models for both hy-
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potheses. On one hand, we use a 2-component GMM (Gaussian
Mixture Model) to model W. On the other hand, we use simple
Gaussian function to model U and V independently. Since, one
GMM and two Gaussians are used in this method, we name it
G? algorithm. The GMM parameters are estimated on-the-fly
using the expectation maximization (EM) algorithm.

Now, let ¢, be the parameter vector of a 2-GMM estimated
from W, and let ¢, and ¢, be the Gaussian parameters for U
and V, respectively. If we assume the features in U and V are
independent and identically distributed, we have the following
expression for log likelihood L, and L, for both hypotheses
Hy and H,, respectively,

Ly = 3 log(p(wiléw)) + 3 log(p(vilén)), (1)

i=1 j=1

and
N N
L, =D log(p(uiléw)) + D log(p(vilén)), @

where p(z|¢) is the likelihood of the fused feature vector
given model parameters ¢. The detection index, Dy, 1, r, is based
on log-likelihood ratio (LLR) and is given by

3

where D r is greater than O whenever the 2-component
GMM is a better model for the observed fused feature vector
‘W. Hence, speaker change (H1) occurs when Drrr > 0 [14].

Drrr =Ly, — Ln,,

2.2. Hausdorff distance-based Speaker Clustering

Most state-of-the-art diarization systems used for TV shows
and meetings tend to use hierarchical clustering. However, re-
search has shown that spectral clustering that involves eigen-
decomposition and k-means clustering is computationally sim-
ple as compared to hierarchical clustering [16]. For example,
in [16], the authors used Japanese Parliament audio data that
had segments of length 3 seconds or greater to compare hier-
archical and spectral clustering. Spectral clustering is a global
approach and hence optimal with respect to similarity criterion.
On the other hand, hierarchical clustering is greedy and can lead
to sub-optimal solutions. However, the performance of spectral
clustering largely depends on the choice of similarity metrics.



Here, Kullback-Leibler (KL) divergence is not the best suited
for audio segments of less than 3 seconds [16]. In CRSS-PLTL,
short speaker turns (about 1 second) were quite common, that
made it difficult to use the KL divergence metric. This moti-
vated the need to research a more suitable metric. In this study,
we propose to use Hausdorff distance as similarity measure for
spectral clustering.

The Hausdorff distance assigns a scalar metric for similarity
between two vectors or two matrices or a vector and matrix of
different sizes. It has been found to be effective in tracking
similarity among complex structures [17, 18]. Let A1 and A2
be feature matrices of dimension mi1 X n and ms X n where
m1 and mz are number of frames in both audio segments and n
being the feature dimension. The Hausdorff distance between
feature matrices, A1 and Az is given as

dH(Al,Az) = maX(h(Al,Az),h(Az,Al)), (4)
where h(A1, A2) is given by,
h(A1,A2) = max min | a1 —a2 |, 5)

a1 €A1 axEA2

and || - \]| is some underlying norm such as Ly or Euclidean
norm on elements in A; and A’>. Here, dy is the Hausdorff dis-

tance between two feature matrices, A1 and A2. Using Haus-
dorff distance as a similarity metric, various audio segments
are compared and the most similar are merged together. Next,
the Hausdorff distance between newly merged cluster and other
clusters is recomputed and the process is repeated until we are
only left with two clusters (one each for primary and secondary
speakers).

2.3. Primary speaker identification

Once two clusters are identified using Hausdorff distance based
clustering, primary and secondary clusters are identified in the
last step. The identification can be made based on a simple ob-
servation that the primary speaker tends to be closer to the mi-
crophone than secondary speakers. This causes primary speech
to be more energetic than secondary speech. We have previ-
ously exploited this fact in other studies [19, 12], and have seen
that this is a fairly robust assumption that tends to get even
stronger with increasing duration. By measuring the average
energy in the two clusters, we assign the cluster with higher and
lower energies to primary and secondary speakers, respectively.
The energy computation is performed by summing the energy
of the first two speech formants.

Finally, since we have multi-channel data, the energy mea-
surements across channels can be further exploited to improve
primary speaker identification. It is useful to note that while all
microphones pick up every speaker’s voice (due to close prox-
imity), each speaker is loudest (most energetic) on their own
microphone (owing to the physical distance separating speak-
ers from the microphone). Additionally, it is assumed that over-
lapped speech is rare, and only one speaker speaks at a time (our
analysis of the data showed that less than 3% of the data con-
tained overlapped speech). In other words, there is only one pri-
mary speaker across all channels at any given time. To exploit
this, we scan decisions across all channels for fixed time win-
dows (we used 2 second windows in our experiments), and iden-
tify regions where more than one channel contains the primary
speaker. For these regions, we retain primary speaker decision
only for the most energetic channel, and reverse the decision to
secondary speakers for other channels. This process allows us
to further refine the diarization hypothesis. There were some
temporal shifts in various audio streams that was not utilized in
this paper.
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2.4. Analysis

Once primary vs. secondary speaker decisions are available for
each audio channel, the overall diarization information is read-
ily made by merely combining the individual channel results.
Using the basic diarization information, a number of interest-
ing metrics can be derived for the PLTL session. In this study,
we show two metrics: (i) speaker turn-taking, and (ii) speaker
participation measured using speech duration.

The quality of a conversation either in a classroom scenario
such as PLTL or those at workplaces can be quantified quali-
tatively in terms of turn-taking. More turn-taking between var-
ious speakers in a group discussions shows more engagement
and hence healthy discussions. For PLTL scenario, better en-
gagement in solving tutorial problems can conclude that stu-
dents are motivated in problem solving. We used the G* algo-
rithm for counting the conversational-turns taken. Total number
of conversational turns taken is given by the total number of
speaker-changes for each channel of PLTL. Averaging the total-
turns from each channel, we get the average turns taken in PLTL
session. This metric quantifies the quality of discussions in that
session. We compute the speaker-changes on a sliding segment
of 1 second duration. The total conversational-turns computed
from various channel are summarized in Table 2.

3. Experiments
3.1. CRSS-PLTL Corpus

While collecting CRSS-PLTL corpus data, 5 PLTL teams were
tracked over an entire semester. Each team consisted of 5-to-8
members, where one member was always the team leader. All
teams met once every week for a total of 11 weeks, resulting in
a total of 55 sessions for the corpus. All students were part of
an undergraduate Chemistry course. The collection is longitu-
dinal as it tracks individuals over a 3-month time period. Each
session was 80 minutes long, and each team member wore a
numbered LENA audio recording unit for the entire duration of
the session. It is useful to note that the LENA digital language
processor (DLP) can record audio signals for long duration upto
16 hours and has been used for a variety of human-to-human
communication research studies, especially adult-child interac-
tion [20, 21, 22].The audio data in CRSS-PLTL contains vary-
ing amounts of noise and reverberation, and at times, the noise
and reverberation level can be significantly degrading. Finally,
each student completed a survey after each session that sought
Likert-scale ratings for subjective questions such as behavior,
communication, learning, efc.. In order to facilitate experimen-
tal evaluation for this study, 21 minutes from one session was
chosen, and manual annotations for speech activity and diariza-
tion were created. This evaluation set contained 7 parallel audio
channels (corresponding to 7 team members who attended that
session). We downsampled the audio data to 8 kHz before pro-
cessing it. It is same for all results discussed in this paper.

3.2. Baseline System

We used the LIUM speaker diarization system as the baseline
diarization system and compare its performance with the pro-
posed system [5, 23]. The standard LIUM system was used
for results presented in this paper. It is possible to use reason-
able amount of labeled PLTL data for optimizing the LIUM
system parameters. However, we have not optimized LIUM
system for results discussed in this paper due to unavailabil-
ity of enough labeled data. For all the experiments, the audio
signals were downsampled at 8 kHz. The speech signal was di-
vided into frames of size 40ms with a skip rate of 10ms. Our
previous study has shown that TO-Combo-SAD worked better



Table 1: Comparison of proposed system and LIUM baseline
using Diarization Error Rate (DER) and Speech Activity Detec-
tion (SAD) Equal Error Rate (EER).

System Used DER (%) | EER(%)
LIUM (A) 35.80 12.54
A + TO-Combo-SAD (B) 34.20 8.67
B + Primary Speaker Identification (C) 32.76 8.67
Proposed System 24.96 8.67

than the default SAD setup in LIUM [12]. Hence, we used TO-
Combo-SAD to generate speech vs. non-speech decisions. We
constrained LIUM to 2-speaker decisions, and further used the
primary speaker identification method described in Sec. 2.3 to
make primary vs. secondary speaker decisions.

3.3. Results & Discussions

We used DER as the figure of merit for the proposed and base-

line diarization systems. DER, as defined by the NIST Rich

Transcription Evaluation [24], can be computed as,

_ Lfa + Lmiss + Lerr
Ltotal

DER (6)

where where Ly, is the total number of non-speech segments
detected as speech, L,iss is the total number of the speech

segments detected as non-speech, L., is the total number of
speech segments that were detected as speech but clustered as
incorrect speakers, and Lqo¢q: S the total number of speech seg-
ments obtained using the ground-truth labels. Average DER
across various channels was used as a metric for performance
comparison. Additionally, we also compute and report equal
error rate (EER) for TO-Combo-SAD. Table 1 shows DER and
EER numbers for the baseline and proposed systems. Systems
A, B and C are variations of the baseline LIUM system, where
A is the LIUM system, B is LIUM system that takes SAD de-
cisions from TO-Combo-SAD, C is LIUM system with TO-
Combo-SAD that uses primary speaker identification described
in Sec. 2.3. As seen in the table, TO-Combo-SAD (8.67% EER)
delivers superior SAD decisions vs. LIUM SAD (12.54% EER).
Furthermore, using TO-Combo-SAD and primary speaker iden-
tification reduces overall DER for the task by about 3% absolute
(35.80% to 32.76%). However, the proposed diarization system
is able to significantly outperform system C, and improves the
DER by about 8% absolute. This is remarkable because the pro-
posed system is unsupervised and relatively computationally in-
expensive when compared to LIUM (that utilizes i-vector based
solution). We believe the better performance was achieved be-
cause CRSS-PLTL data contained shorter speaker turns, where
the proposed system outperformed LIUM. Further analysis of
DER across each audio channel revealed that the DER for in-
dividual channels varied between 22.48% to 26.84%, that sug-
gests stable performance. Finally, we show two analyses us-
ing the proposed system. In the first analysis, the diarization
output was used to count turns taken by each student and the
team leader. The speaker turns could also be estimated from the
ground-truth and this was used to determine accuracy of turn
taking analysis. Table 2 shows turn taking estimation perfor-
mance. It can be seen that the percentage error varies between
2.7% and 7.32%, that was interesting given that DER was about
24% for this task. On average, each member took 35-to-36 turns
in the 21-minute evaluation audio. Finally, we estimated how
long each member spoke, by using the diarization output. In
Fig. 2 (a), the proportional duration (that indicates proportional
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Table 2: Showing performance of conversational-turn taking
analysis using proposed speaker diarization system.

Member | Estimated Turns-taken | Error (%)
Student 1 34 5.56
Student 2 38 6.45
Student 3 27 6.86
Student 4 35 7.32
Student 5 39 4.88
Student 6 37 6.45
Leader 37 2.70
Mean 35.29 5.75

PLTL Session Participation Analysis

(a) (b)

Student 1

6%

Student 2
9

Student 1
6%

Student 2
6%

Leader
66%

Estimated using Proposed Diarization
System

Ground Truth

Figure 2: Automatic PLTL member participation analysis using
proposed diarization system and comparison to analysis gener-
ated from ground-truth labels.

participation in conversation) is shown, and compared to a pro-
portional participation pie chart generated using ground-truth in
Fig. 2 (b). Comparison of the percentage participation numbers
showed that the error were surprisingly low, and the analysis
generated through proposed diarization method was rather ac-
curate. For example, the leader occupies the conversation for
almost two-thirds of the time, and students 6 and 3 contribute
the most and least among students, respectively. In future work,
encouraged by the results seen here, we wish to expand such
analysis to the entire CRSS-PLTL corpus, and explore the abil-
ity to detect students at risk for subject material learning.

4. Conclusions

This study proposed an unsupervised speaker diarization sys-
tem that used a new speaker change detection algorithm (termed
unsupervised G* algorithm) and a new speaker clustering algo-
rithm based on Hausdorff distance. A feature set for unsuper-
vised G algorithm that worked well for PLTL data had also
been proposed. TO-Combo-SAD was used to separate speech
from non-speech. The proposed diarization system was eval-
uated on a new corpora called CRSS-PLTL. The new corpora
presents opportunity for speaker diarization research and its ap-
plication in education research. In the experimental evaluations
shown, the proposed diarization system significantly outper-
form the baseline LIUM diarization system. Finally, practical
analysis using the proposed diarization system output was pre-
sented and discussed. The results and analyses presented are
encouraging and motivate use of speech processing technology
in studying practical problems in education research in partic-
ular, and human-to-human communication problems for small
groups in general.
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