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Abstract
Most speech recognition systems use spectral features

based on fixed filters, such as MFCC and PLP. In this paper,
we show that it is possible to achieve state of the art results by
making the feature extractor a part of the network and jointly
optimizing it with the rest of the network. The basic approach
is to start with a convolutional layer that operates on the signal
(say, with a step size of 1.25 milliseconds), and aggregate the
filter outputs over a portion of the time axis using a network in
network architecture, and then down-sample to every 10 mil-
liseconds for use by the rest of the network. We find that, unlike
some previous work on learned feature extractors, the objective
function converges as fast as for a network based on traditional
features.

Because we found that iVector adaptation is less effective
in this framework, we also experiment with a different adapta-
tion method that is part of the network, where activation statis-
tics over a medium time span (around a second) are computed
at intermediate layers. We find that the resulting ‘direct-from-
signal’ network is competitive with our state of the art networks
based on conventional features with iVector adaptation.
Index Terms: raw waveform, statistic extraction layer, Net-
work In Network nonlinearity

1. Introduction
Most conventional automatic speech recognition (ASR) sys-
tems use hand-crafted spectral and cepstral features such as
MFCC [1], PLP [2] and mel filterbank. These are inspired from
physiological models of the human auditory system and may
not be the most appropriate for the final ASR objective of word
error rate (WER) reduction. Deep neural networks (DNN) have
been shown to be able to integrate the feature extraction stage
with the classification stage. With DNNs, mel-like filterbanks
can be learnt from the power spectrum [3]. Tuske et al. [4] pro-
posed to use the raw time signal directly as input to a DNN. A
1-d convolution layer was later introduced to do time-domain
filtering using the same shared parameters for different time-
shifts of input [5, 6]. The filters learned can model the spectral
envelope of speech signal corresponding to different phonemes
[6]. To the best of our knowledge, [7] is the only work where
a raw waveform system is shown to give a better WER than
the conventional features. However, they only report results us-
ing a very large training set. It is not clear how any of these
approaches would perform on standard LVCSR tasks relative
to the state-of-the-art systems that includes speaker adaptation.
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Our current work beats the recognition performance of a state-
of-the-art MFCC-based time-delay neural network (TDNN) [8]
system [9] on the WSJ task and matches the performance on the
Switchboard [10] task.

One of the issues with learning directly from the waveform
is the large number of variations for a given phoneme in the
form of phase shifts and temporal distortions. Since the input to
the DNN is at a very fast rate (8-16 kHz), using a wide temporal
context would result in needing a very large affine component
in the case of a TDNN and difficulties in performing backprop-
agation through time in a recurrent neural network (RNN). A
typical approach to deal with these issues is to do max-pooling
over time [11]. In [7], conventional pooling approaches such as
max, p-norm and averaging functions are compared. Bhargava
et al. [12] uses a pre-trained bottleneck DNN to extract features
that are spliced at a slower 10 ms period over a long temporal
window. In this paper, we present a novel network-in-network
(NIN) [13] architecture that aggregates filter outputs over time.
With this architecture, the network can even train faster than our
baseline MFCC-based TDNN (See figure 2).

With traditional features, speaker adaptation is usually done
using a generative framework that involves transforming fea-
tures to a different space using fMLLR [14] etc. or applying a
speaker-dependent bias using iVectors [15, 16]. However, iVec-
tors are not straight-forward to work with, especially in mis-
matched conditions [17], and requires careful pre-processing
such as segmentation and additional architectural tricks [18].
We could not get iVectors working as well in the raw wave-
form setup as in the MFCC setup. We instead experiment with
an adaptation approach that uses activation statistics of hidden
units accumulated over about a 2 second long window. Our ap-
proach eliminates the performance gap compared to the MFCC-
based TDNN system with iVector speaker adaptation.

The rest of the paper is organized as follows. Section 2
describes the methods we use to preprocess and perturb the
raw waveform data during training and testing. Section 3 de-
scribes the CNN-based neural network architecture used in our
raw waveform setup and gives a detailed description of the pro-
posed NIN nonlinearity and statistics extraction layer. Section 4
gives an empirical analysis of our raw waveform setup using ex-
periments conducted on standard LVCSR tasks.

2. Raw waveform processing

In this section, we describe the pre-processing on the raw wave-
form before supplying it as input to the neural network.
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2.1. Waveform normalization

The input frames to the neural network are non-overlapping 10
ms long segments of the raw waveform signal. The raw wave-
form samples are quantized to 16 bits per sample, and mean
and variance normalized at the utterance level . The mean vari-
ance normalization can be important for stable training [4]. The
raw waveform setup with no input normalization converges a bit
slower in the early stage of training, but its final performance is
the same as normalized system on WSJ.

2.2. Data perturbation

We augment the data by producing 3 versions of the original
signal with speed factors 0.9, 1.0 and 1.1 [19] in both the raw
waveform and MFCC-based setups. The Fourier modulus is
translation invariant and stable to additive noise but unstable to
small deformations at high frequencies [20]. FFT-based fea-
tures such as MFCC and PLP are invariant to modest transla-
tions. The large amount of variations in the raw waveform input
for a given phoneme can be detrimental to training. One ap-
proach to mitigate this is to artificially perturb the data to make
the network invariant to those perturbations. To achieve transla-
tion invariance, we perturb the raw input signal during training
by shifting the samples randomly to right for up to of 20% of
the frame window size. This means that in different epochs, we
might see the same data at different shifts.

Random perturbation can greatly help in improving raw
waveform performance on small datasets such as WSJ. Table 1
shows the effect of random shifts on final validation and training
log-likelihoods.

Table 1: Data perturbation effect on WSJ.

Perturbation method Training CE Validation CE

No random shift -0.96 -1.22
With random shift -0.88 -1.13

3. Neural network architecture
In this section, we explain key features of the neural network
used in our raw waveform setup. We start by describing the two
novel architectural additions – the network-in-network nonlin-
earity in section 3.1 and the statistics extraction layer in sec-
tion 3.2. We finally give the overall architecture used in our
CNN-based raw waveform setup in section 3.3.

3.1. Network-in-network (NIN) nonlinearity

We introduce a new type of nonlinearity that is a special case
of the network-in-network nonlinearity proposed in [13]. It is
a many-to-many nonlinearity consisting of two block diagonal
matrices, with repeated blocks, interleaved between layers of
rectified linear units (ReLU). A normalization layer [21] is al-
ways added after the NIN nonlinearity to stabilize training. Fig-
ure 1 shows a graphical representation of the nonlinearity.

The transformation block U1 of size m × k maps an in-
put of size m into a higher dimensional space with dimension
k, and it is subsequently passed through ReLU. We will refer
to the quantity k as the “NIN hidden dimension”. The second
transformation block U2 of size k × n maps it down to a lower
dimensional space with dimension n followed by another rec-
tification using ReLU. We will refer to the combination of U1

block and U2 block along with the ReLUs as a “micro neural
network block” as marked in figure 1.

To concisely describe the proposed NIN nonlinearity, we
can say that it is a group of micro neural network blocks ap-

plied to non-overlapping patches of input with each block being
a nonlinear transformation from m dimensional space to n di-
mensional space.

If the micro neural network block parameters are shared
across the NIN, each column of the block U1 can be interpreted
as a 1-d convolution filter with a filter size m and a filter shift
m. Thus, the same filter is applied to non-overlapping patches
and this models local connectivity. The shared parameters in the
NIN nonlinearity keeps its total parameter count low relative to
the size of its input and output, and allows it to be trained faster.

Figure 2 compares the training log-likelihoods for raw
waveform setup using NIN nonlinearity against the baseline
MFCC system. The raw waveform setup with proposed non-
linearity converges faster than the best baseline MFCC setup
and the final objective value is better than baseline.
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Figure 1: Proposed NIN nonlinearity
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Figure 2: Convergence of training objective function in raw
waveform setup using NIN nonlinearity vs MFCC setup using
ReLU.

3.2. Statistics extraction layer

This layer extracts 1st and 2nd order statistics from hidden layer
activations. These statistics are computed over a moving win-
dow of up to 200 frames (2 seconds) and appended to the input
of the next hidden layer.

Given an n-dimensional input, this layer computes an 2n
dimensional output consisting of the moving average mean of
the activations and the raw diagonal 2nd-order statistics.

We expect this layer to capture long term effects in the sig-
nal such as speaker, channel and environment characteristics.
This is particularly useful in the raw waveform setup as the
raw signal has more information related to these characteristics,
which are not in MFCCs.

3.3. CNN-based raw waveform setup

Our raw waveform setup consists of two parts – a feature ex-
traction block and a classification block. The feature extraction
block described in Section 3.3.1 consists of a CNN layer to pro-
cess the raw waveform samples. The CNN outputs are aggre-
gated using the proposed NIN nonlinearity. The classification
block in our setup uses the basic TDNN architecture, but using
the proposed NIN as the nonlinearity instead of ReLU. This is
described in detail in Section 3.3.2.
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3.3.1. Feature extraction block

The feature extraction block is illustrated in figure 3. It has a
1-d convolution layer, which takes M samples of the raw wave-
form and convolves them with N K-dimensional filters. S is
the step size taken along input axis for computing the next dot-
product of input and filters. Using the step size is equivalent to
subsampling the output of convolution by a rate S. This helps
in reducing computation time. The output dimension of convo-
lution layer is N × D, where D = M−K

S
+ 1. Next, we take

the absolute value of the filter outputs and take the logarithm.

The major difference in our raw waveform architecture
compared to the CNN-based setups in [11, 7, 22] is the use of a
NIN nonlinearity. These setups use conventional pooling tech-
niques such as max pooling over time to reduce the output of
the convolutional layer to N × 1 from N × D. Our proposed
NIN nonlineariy (see Section 3.1) takes the place of this pooling
layer. The U1 block of the first NIN nonlinearity is chosen to be
of dimension D× k, where k is the NIN hidden dimension that
is typically around 5D. A single micro neural network block
is shared across all N filters. Each micro neural network block
aggregates information over D samples. We have two consecu-
tive layers of the proposed NIN nonlinearity. The normalization
layer that we use after each nonlinearity scales down the output
and keeps its averaged norm in check.

In speaker adaptaion experiments using raw waveform,
iVectors are appended to the NIN output at this stage after first
being passed through a separate affine component and a ReLU
layer [18]. In the MFCC setup, we append and pass the iVectors
and MFCC through an LDA transformation [21].

Figure 5 compares training convergence rates using 3 dif-
ferent approaches to do pooling over time in feature extraction
block, while keeping the rest of the network the same. As
shown, using NIN to aggregate outputs converges faster than
using both p-norm pooling and no pooling. Our experiments
also shows that the NIN aggregation gives 1% WER improv-
ment over using p-norm pooling.

3.3.2. Classification block

Figure 4 shows the structure of a DNN layer used in the clas-
sification block. We use a TDNN architecture [23] to splice
D3 dimensional inputs at different time steps t1, t2, · · · , tn,
but also append to this the moving statistics extracted using
the statistics extraction layer (Section 3.2). Then, we rearrange
the dimensions of the spliced input so that the L shared mi-
cro neural network blocks in the NIN nonlinearity is applied on
d = D3

L
dimensional patches of input data extracted from all

the n time steps appended with the statistics extracted over time
steps tl, · · · , tr for the same d dimensions. The NIN nonlinear-
ity is followed by a normalization layer and a full affine trans-
form to reduce the output dimension to D3. We stack several
layers of this type to form the classification block.

4. Results
4.1. Experimental setup

We conduct our experiments on two corpora – 300 hours
switchboard conversational telephone speech corpus [10] and
∼ 80 hours Wall Street Journal continuous speech corpus [24].
All our experiments are conducted using the Kaldi Speech
Recognition Toolkit [25] For the baseline, we use DNNs in
time-delay neural network architecture with 40-dim MFCC fea-
tures as input. For speaker-adapted systems, 100-dim iVectors
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Figure 3: Raw waveform feature extraction Block.
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Figure 4: Layer configuration in raw waveform classification
block.

are appended to the input features. The reader is directed to [9]
for the architectural details.

4.2. Convolution filter analysis

The reasonable results using our raw waveform setup show that
the first layer of network learns useful band-pass filters. The
filters learned by our network are similar to those observed in
other raw waveform works in the literature [5, 7, 22]. Figure 6
shows the learned filters in the form of a time-domain amplitude
plot as well as a magnitude frequency response plot. The fil-
ters have been sorted by the center frequencies. The frequency-
domain plot shows that the center frequencies of the filters in-
creases linearly until 1000 Hz, which is very similar to mel fil-
terbanks.

4.3. Results

4.3.1. WSJ task

The raw waveform setup used in WSJ experiments is as de-
scribed in Section 3, we use both p-norm pooling and NIN non-
linearity in the feature extraction block and conventional TDNN
layer used in the classification block. The networks here, in-
cluding the MFCC baselines, are trained using frame cross-
entropy objective. The statistics extraction layer is not used in
these experiments as the cross-entropy model trains on small
chunks over which we cannot extract reliable statistics.

The CNN layer in feature extraction block consists of 40
filters. The filter size 30 ms is used on 50 ms raw waveform
signal that is sampled at 16 kHz and the filter step size used is
0.62 ms. Table 2 compares results of our raw waveform setup
and the MFCC-based TDNN system on the WSJ 5K vocabulary
task. First 3 rows are the systems without speaker adaptation. In
2nd experiment, the output of the convolution filters are pooled
over time using p-norm pooling and in 3rd and last experiment,
the NIN nonlinearity with 40 micro neural network blocks with
input size 16, NIN hidden dimension 300 and output size 32
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Figure 6: Amplitude plot (top) and magnitude response (bottom)
of learned filters ordered by center frequency

are used. The classification block has 6 hidden layers, each
with 750 ReLU units. We see that the raw waveform system
performs more than 1% absolute better than the MFCC baseline.

From the next two lines, we see that adding iVectors to the
MFCC system improves the MFCC baseline but still does not
beat the raw waveform setup without iVectors. This may in-
dicate that our raw waveform setup is less sensitive to speaker
mismatches. Adding iVectors to the raw waveform setup actu-
ally degrades the result. In the final experiment, we tried adding
the NIN nonlinearity, but could not get any improvment over
ReLU.

Table 2: WER (%) Results on WSJ LVCSR task.
Model Nov’92 eval Nov’93 dev
MFCC 5.28 8.29
Raw 3.95 7.34
Raw + NIN 3.92 7.6

MFCC + iVector 4.52 7.51
Raw + iVector 4.06 7.80

4.3.2. Switchboard task

Table 4 compares results of the proposed raw waveform system
and the MFCC-based TDNN system on the switchboard task.
The results are reported both the Hub5’00 evalutation set and
the RT’03 evalutation set.

In raw waveform setup, the CNN layer consists of 100 fil-
ters. The filter size used is 31.25 ms on a 50 ms raw wave-
form signal that is sampled at 8 kHz and the filter step size is
1.25 ms. The feature extraction block uses NIN nonlinearity
with 100 micro neural network blocks with input size m = 16
(same as convolution filter output dim), NIN hidden dimension
k = 120 and output size n = 18. The output dimension of the
feature extraction block is D3 = 500. The classification block
has 6 hidden layers, with either ReLU nonlinearity (600 hidden
units) or NIN nonlinearity. The NIN nonlinearity has 100 micro
neural network blocks with input size m = 5, NIN hidden di-
mension k = 75 and output size n = 18. The neural networks
are trained using lattice-free MMI [9]. In the experiments us-
ing the statistics extraction layer, mean and standard deviation
of the hidden layer activations are computed over the available
frames on either side for up to a maximum of 99 frames on ei-

ther side.
Table 3 shows the effect of using NIN nonlinearity in the

classification block in the raw waveform setup. The ReLU sys-
tem and the NIN system, both have the same TDNN structure
in terms of context [23] and use the same feature extraction
block including iVectors. We see that using NIN nonlinearity
gives 1% improvement over the conventional ReLU nonlinear-
ity in the raw waveform setup. However, we found that the NIN
nonlinearity does not give any improvement over ReLU on the
MFCC setup.

Table 3: Effect of NIN nonlinearity
Hub5’00 RT’03

Model Total SWBD Total SWBD

ReLU 17.2 11.5 19.9 24.0
NIN 16.1 10.5 18.9 23.1

Table 4 compares the raw waveform setup with NIN nonlin-
earity and MFCC setup with ReLU nonlinearity. The first two
rows in the table are the results without speaker adaptation.

The next two rows show the effect of adding the statistics
extraction layer. We see that statistics extraction layer improves
the performance of both MFCC and raw waveform setups. The
raw waveform setup works slightly better than the MFCC setup,
which may indicate the statistic layer helps the network to ex-
tracts some speaker or channel dependent information directly
from raw waveform, which may removed during MFCC extrac-
tion process.

The last two rows show the effect of doing speaker adap-
tation by adding iVectors. We see that iVectors give a lot of
improvement in the MFCC setup, but only a little improvment
in the raw waveform setup. We hypothesize that the raw wave-
form possesses more information than the MFCC features and
the network can learn to account for the speaker and environ-
ment variability. However, we need to do more experiments to
verify this.

Table 4: WER (%) Results on Switchboard LVCSR task.
Hub5’00 RT’03

Model Total SWBD Total SWBD

MFCC 17.5 11.6 22.1 26.6
Raw 17.4 11.5 21.7 26.5

MFCC + Stats 16.4 11.0 20.0 24.3
Raw + Stats 16.3 10.6 19.1 23.3

MFCC + iVector 15.7 10.4 19.2 23.5
Raw + iVector 16.1 10.5 18.9 23.1

5. Conclusion
We proposed a CNN-TDNN based architecture for the raw
waveform setup including a repeated “network-in-network
structure which aggregates the time information from convo-
lution filter outputs. We show that results are improved if this
NIN nonlinearity takes the place of the conventional ReLU hid-
den layer in the DNN. We were not able to get improvement
from adding iVectors to the network using raw-waveform in-
puts, but we got almost as much improvement from a different
adaptation method internal to the network. It extracts mean and
standard deviations from moving-average windows of hidden-
layer activations. On the Switchboard task that we can compete
with even state-of-the-art iVector speaker-adapted MFCC sys-
tems; thus eliminating the need for iVector based speaker adap-
tation. The performance of the proposed raw waveform setup
needs to be investigated on other datasets, including in noisy
and mismatched conditions.
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