
Identifying Hearing Loss from Learned Speech Kernels

Shamima Najnin2, Bonny Banerjee1,2, Lisa Lucks Mendel3, Masoumeh Heidari Kapourchali1,2,
Jayanta Kumar Dutta2, Sungmin Lee3, Chhayakanta Patro3, Monique Pousson3

1Institute for Intelligent Systems,
2Department of Electrical & Computer Engineering,
3School of Communication Sciences and Disorders

The University of Memphis, Memphis, TN 38152, USA
{snajnin, bbnerjee, llmendel}@memphis.edu

Abstract
Does a hearing-impaired individual’s speech reflect his

hearing loss? To investigate this question, we recorded at least
four hours of speech data from each of 29 adult individuals,
both male and female, belonging to four classes: 3 normal, and
26 severely-to-profoundly hearing impaired with high, medium
or low speech intelligibility. Acoustic kernels were learned
for each individual by capturing the distribution of his speech
data points represented as 20 ms duration windows. These ker-
nels were evaluated using a set of neurophysiological metrics,
namely, distribution of characteristic frequencies, equal loud-
ness contour, bandwidth andQ10 value of tuning curve. It turns
out that, for our cohort, a feature vector can be constructed out
of four properties of these metrics that would accurately clas-
sify hearing-impaired individuals with low intelligible speech
from normal ones using a linear classifier. However, the over-
lap in the feature space between normal and hearing-impaired
individuals increases as the speech becomes more intelligible.
We conclude that a hearing-impaired individual’s speech does
reflect his hearing loss provided his loss of hearing has consid-
erably affected the intelligibility of his speech.
Index Terms: Acoustic feature learning, spherical clustering,
tuning curve, bandwidth, equal loudness contour, audiogram

1. Introduction
In the current state-of-the-art, personalized tuning of hearing
devices, such as cochlear implants (CIs) and hearing aids, to op-
timize the hearing sensations received is a challenging and time-
consuming task, even for highly trained and experienced audiol-
ogists. Consequently, the benefits of such devices, particularly
CIs, are almost never fully utilized. Limited data is the bottle-
neck; an audiologist can test a patient for only a few parameter
combinations in each visit which, even if done judiciously as
in [1], is still inadequate to estimate the optimal combination.
Since speech, unlike perception, is easily accessible, it can be
mined using machine learning algorithms to infer the nature of
hearing loss provided the speech of hearing-impaired individu-
als reflect that nature. This motivates us to investigate whether
a hearing-impaired individual’s speech reflects his hearing loss.

Studies have found that the deficiencies in hearing for peo-
ple with significant hearing loss are reflected in their speech
[2, 3]. Hornsby et al. [4] found that as the degree of hear-
ing loss increased, speech perception ability in those frequency
regions decreased which affected the individual’s ability to pro-
duce those sounds. Teoh et al. [5] examined physiological,
anatomical, and cognitive evidence in prelingually deafened
adults and concluded that inadequate auditory input during the

early years of speech and language development constituted the
primary limiting factor in the intelligibility of speech. The
speech production characteristics of individuals with hearing
impairment have been described in depth by a number of re-
searchers [2, 6, 7, 8], indicating several notable features that are
distinct to this population, including omission, substitution, and
place of articulation errors. The frequency of errors increases
with the degree of hearing loss. Abnormal voice characteristics
such as harshness, breathiness, and hyper- and hypo-nasality
may also be present.

However, there are factors that can improve a prelingually
deafened individual’s speech intelligibility, such as, the abil-
ity to make use of available acoustic cues [2] and presence of
auditory input through hearing devices together with auditory-
oral/linguistic training [9, 10]. Adults who are postlingually
deaf and lose their hearing later in life often suffer little or no
deterioration in intelligibility, likely because their residual hear-
ing provides sufficient feedback since their mature speech pro-
duction systems rely more on motor sensory input rather than
auditory information to maintain proper control [11, 12, 13].

In this paper, we report our findings on whether a hearing-
impaired individual’s speech reflects his hearing loss using a
novel line of investigation. As subjects, we considered a cohort
of 29 adult individuals, both male and female, consisting of 3
normal and 26 with severe-to-profound hearing loss. Among
the hearing impaired, 6, 8 and 12 had high, medium and low
speech intelligibility respectively, covering the entire intelligi-
bility spectrum. At least four hours of speech data from read-
ing passages was recorded from each subject. Acoustic ker-
nels were learned for each individual by capturing the distri-
bution of his speech data points represented as 20 ms duration
windows. These kernels were represented using 4-dimensional
feature vectors constituted of four properties of a set of neu-
rophysiological metrics. We show that, for our cohort, these
feature vectors can accurately classify hearing-impaired indi-
viduals with low intelligible speech from normal ones using
a linear classifier (perceptron). However, the overlap in the
feature space between normal and hearing-impaired individu-
als increases as the speech becomes more intelligible. We con-
clude that a hearing-impaired individual’s speech does reflect
his hearing loss provided his loss of hearing has considerably
affected the intelligibility of his speech.

2. Models and Methods
This section explicates our algorithm for learning acoustic ker-
nels and the neurophysiological metrics using which properties
of these kernels will be analyzed.

Copyright © 2016 ISCA

INTERSPEECH 2016

September 8–12, 2016, San Francisco, USA

http://dx.doi.org/10.21437/Interspeech.2016-1488243



2.1. Learning Acoustic Kernels

In machine learning, a number of algorithms have been pro-
posed for learning acoustic kernels from audio data. They
largely operate on the time-amplitude or the time-frequency
representation of the data. Examples of the former include
[14, 15, 16, 17, 18] while those of the latter include [19, 20,
21, 22, 23, 24]. Most algorithms for learning kernels are un-
supervised. They learn either by minimizing the reconstruc-
tion/prediction error (a.k.a. generative models) [16, 15, 22, 17,
18, 19, 21, 23, 24] or by capturing the density of the data [20].
Generative models support a sparse [19, 15, 18, 23, 24] or non-
sparse [21, 16, 22, 17] encoding of the data. Supervised algo-
rithms, such as [15], optimize a discriminative objective. The
kernels are learned to be either shift-invariant (a.k.a. convolu-
tional) [14, 15, 18, 19, 23, 24] or not [16, 22, 17, 25, 26, 20, 21].
Typically, the kernels are evaluated in one of three ways: clas-
sification accuracy [15, 17, 19, 20, 21, 23, 24], source separa-
tion accuracy [14, 22], and in comparison to neurophysiological
findings [18, 16].

In this paper, a soft spherical clustering algorithm is used
for learning kernels from time-amplitude representation of
speech data. Each window of audio constitutes a data point, the
dimension of which depends on the length of the window and
the sampling frequency. The algorithm captures the density of
the data in an unsupervised manner by maximizing the follow-

ing objective on convergence: `(X ,W) =

k∑
i=1

∑
xj∈N (i)

(xj ·wi),

where X = {x1, x2, ...xn} andW = {w1, w2, ...wk} are the
set of d-dimensional data points and kernels (or cluster centers)
respectively, and N (i) is the set of data points in the neigh-
borhood of wi. Each data point and kernel is normalized to
zero mean and unit norm. In case of high-dimensional data,
such as audio windows, the direction of a data vector is more
important than its magnitude [27] which is captured by the co-
sine similarity. The algorithm learns non-orthogonal and non-
shift-invariant kernels that soft partitions the input space on the
surface of a d-dimensional hypersphere of unit radius. Un-
like many clustering algorithms, the underlying distribution in
spherical clustering is arbitrary [28] which is a very desirable
property for our application.

2.2. Neurophysiological Metrics

The learned kernels will be analyzed using the following neu-
rophysiological metrics.

Equal loudness contour (ELC). The human ear does not
perceive all sounds equally for the different frequencies or
sound intensities as the loudness of a pure tone depends on its
frequency. An ELC is a curve that indicates the sound pressure
levels resulting in perception of the same loudness at differ-
ent frequencies across the audible spectrum. The lowest con-
tour represents the minimum audible field (MAF), the abso-
lute threshold of hearing. The shape of each contour differs
between normal and hearing-impaired individuals. In partic-
ular, the slope of the MAF in the higher frequency region is
steeper for hearing-impaired individuals as compared to their
normal hearing counterparts [29]. The average slope of the
MAF between 4 and 8 KHz is computed as: SlopeMAF =

1
v−u+1

∑v
i=u

yi+1−yi
fi+1−fi

, where u is the index of the 4 KHz fre-
quency, v is the index of the 8 KHz frequency, fi and yi are the
frequency and sound pressure level (SPL) respectively at the ith

index. All of our subjects have the minima near 4 KHz in their

MAF.
Tuning curve (TC). A frequency TC is used to display the

auditory threshold at various frequencies for a single auditory
neuron. Each nerve fiber has a characteristic frequency (CF)
where it responds at threshold. At frequencies below 1000 Hz,
TCs are symmetric, and at higher frequencies the curves be-
come increasingly asymmetric and are characterized by a very
sensitive, frequency-selective tip and long, broadly-tuned tail.
A leading cause of hearing loss is hair cell damage. Damage to
outer hair cells results in loss of sensitivity leading to a flattened
tip of the TC. Loss of inner hair cells allows the TC to maintain
its overall shape but there is a loss of sensitivity. Loss of both
inner and outer hair cells result in a major loss of sensitivity
as well as a much broader shape to the TC. The distribution
of CFs will highlight the frequency regions within the audible
range where hair cells are damaged or missing; such regions
should be larger or more frequent in individuals with severe-to-
profound hearing loss than normal ones. The shape of the TC is
captured by its bandwidth and Q10 value.

Q10 value. The sharpness of a TC is determined by the
width of the V-shape of the curve relative to the CF which is
commonly expressed in terms of the quality (Q) factor. TheQ10

is typically used; it refers to the point that is 10 dB below the
peak. Formally, Q10 = fC/BW where fC is the CF and BW
is the bandwidth. The half-power points are the usual cutoff val-
ues which are used to define a bandwidth. Since it is difficult to
determine the half-power points of TCs, the points on the curve
that are 10 dB up from the minimum point of the TC are used.
The bandwidth of a TC provides important information regard-
ing its frequency selectivity; as bandwidth increases, frequency
selectivity decreases. Thus, hearing-impaired individuals ought
to have greater bandwidth than their normal counterparts which
can be captured by the mean bandwidth of all TCs across the
spectrum. For a particular CF, narrower the bandwidth, larger is
the Q10 dB value. Due to greater bandwidth, the slope of Q10

values increases slower with frequency for hearing-impaired in-
dividuals as compared to normal-hearing ones.

2.3. Data

All subjects participating in this research had significant hear-
ing loss in both ears with documented speech production errors.
All subjects were in reportedly good physical health with no
physical, mental, cognitive or emotional limitations. Also, all
of them were native speakers of General American Dialect. To
be included as a participant in this study, subjects had to have at
least a severe sensorineural hearing loss bilaterally with a min-
imum three-frequency pure tone average of 70 dB HL, have
normal middle ear function at the time of testing, and be able
to read words and sentences in order to complete the required
tasks. In addition, three participants had normal hearing.

Testing was conducted in a double-walled sound-treated
booth meeting ANSI Standard S3.1-1999 [30] maximum per-
missible ambient noise levels for audiometric test rooms. Hear-
ing evaluations were performed using a GSI 61 audiometer and
supra-aural TDH-50 headphones, and middle ear function was
assessed using a GSI AutoTymp 38 tympanometer. Follow-
ing the administration of baseline speech production and speech
perception tests, subjects read several standardized reading pas-
sages which comprised at least four hours of reading material
depending on the speed of one’s reading. All subjects read
exactly the same material. All reading material was recorded
in mp3 and wav formats using two separate Marantz digital
recorders. Based on subjective evaluation of the speech from
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the 26 hearing-impaired subjects by multiple normal-hearing
listeners, the subjects were divided into high, medium and low
intelligibility categories.

2.4. Perception and Production Measurements

Speech production measurement. Speech intelligibility refers
to the proportion of a speaker’s output that a listener can read-
ily understand. To estimate the speech intelligibility of the
hearing-impaired subjects, the speech of a normal subject is
taken as the reference. Each sentence from the reference and
the hearing-impaired speech are aligned using dynamic time
warping. Speech intelligibility, measured as normalized sub-
band envelope correlation (nSec), is calculated as in [31].

Hearing measurement. Each subject’s hearing was quanti-
fied by calculating the pure tone average (PTA) which provides
the average of the hearing threshold levels at 500, 1000, and
2000 Hz. This frequency region is commonly referred to as the
speech frequency region of the audiogram. The PTA is a decibel
level that quantifies the degree of hearing loss for each ear.

Perception measurement. All subjects’ speech percep-
tion ability was evaluated using the AzBio sentences [32]. The
AzBio sentences are recorded by both male and female talkers
and are routinely used to evaluate the speech perception capa-
bilities of hearing-impaired subjects. All subjects listened to
three 20-sentence AzBio lists, one in quiet and two in noise, and
listeners were required to repeat the sentences heard. Listener
responses were scored as percent correct based on the number
of words repeated correctly across all sentences in a list.

3. Experimental Results
All recorded data was downsampled from 44.1 to 16 KHz.
The kernels are learned from normalized time-amplitude speech
windows of 20 ms duration with 10 ms overlap between
consecutive windows. Hence the learned kernels are also
time-amplitude signals; they resemble the gammatone filters.
The frequency components of a kernel determine its tun-
ing properties, with the most dominant component being its
CF. In order to characterize the kernels learned from each
of our subjects, we construct a 4-dimensional feature vector
〈SlopeMAF , LossCF, SlopeQ10 , BWavg〉 where LossCF is
the sum of frequency intervals where CFs are absent, SlopeQ10

is the slope of the linear regression from the Q10 vs. CF plot,
and BWavg is the mean of the bandwidths of all TCs. As dis-
cussed in Section 2.2, these four are identified from the litera-
ture as salient features that clearly discriminate between normal
and hearing-impaired individuals based on their tuning proper-
ties in the peripheral auditory pathway. When trained with this
feature vector, a perceptron was successful in finding a linear
classification boundary between the normal and low intelligi-
bility subjects in our cohort. However, that was not the case
between normal and medium or high intelligibility subjects.

The mean of each of the four features for the normal and
hearing impaired with low intelligibility subjects are separated
significantly (see Table 1). However, the separation is not so
clear between the normal and hearing impaired with high intel-
ligibility subjects, which is expected as the features are derived
from their speech and not hearing. Also, consistent with pre-
vious findings, the mean of SlopeMAF , LossCF and BWavg

increases while that of SlopeQ10 decreases as we move from
normal to hearing impaired with low intelligibility subjects.

Figure 1 shows the location of each subject in the plots
for perception (AzBio, PTA) and speech intelligibility (nSec)

Table 1: Mean and standard deviation (µ, σ) of the four features
for our cohort of 29 subjects.

Normal Hearing Impaired (26)
Hearing & High Medium Low
Speech (3) Int. (6) Int. (8) Int. (12)

SlopeMAF 0.08, 0.39, 0.26, 0.53,
0.01 0.48 0.26 0.26

LossCF 616, 1616, 1981, 3012,
125.83 964.19 1184 1184

SlopeQ10 6.9, 8.87, 6.74, 0.59,
3.66 5.19 6.33 6.34

BWavg 741.64, 633.73, 939.6, 2169,
357.74 215.25 649.39 649.38

scores with respect to the four features. Note that in these
plots, the normal subjects are frequently clustered together with
minimal variability. Our hearing impaired subjects have higher
SlopeMAF than normal ones due to higher threshold in the high
frequency region, which is consistent with the findings in [29].
Hearing impaired subjects are expected to have more damaged
hair cells which is represented by intermittent lack of coverage
along the frequency range. The nSec vs. LossCF plot reveals
that even though some of the hearing impaired subjects have
high speech intelligibility, they produce less number of frequen-
cies in their speech leading to higher LossCF than normal sub-
jects. Soft spherical clustering was able to capture these indi-
vidual hearing loss characteristics from their produced speech.

The threshold between normal and hearing impaired sub-
jects, as depicted by the vertical dotted line in each plot in Fig-
ure 1, shows that the normal hearing and hearing impaired with
low intelligibility subjects are almost separable. Note that sub-
jects 3, 19 and 21 belong to the wrong side in a number of plots.
In subjects 3 and 21, very few learned kernels have a character-
istic frequency above 1 KHz. Thus, theirBWavg and SlopeQ10

mostly reflect the properties of TCs in the low frequency region
which is similar to those of the normal subjects. For subject 19,
the bandwidth of the learned kernels in the high frequency re-
gion (between 2-6 KHz) turns out to be lower than those in the
low frequency region which makes his BWavg similar to nor-
mal subjects. Unlike subject 19, the bandwidth increases with
characteristics frequency in the normal hearing population.

4. Conclusions
Acoustic kernels were learned using soft spherical clustering
from at least four hours of speech data recorded from a cohort of
3 normal and 26 severely-to-profoundly hearing-impaired sub-
jects with different degrees of speech intelligibility. Four neuro-
physiological features in the peripheral auditory pathway were
identified from the literature that differentiate the normal and
hearing-impaired individuals. When the learned kernels were
represented using the same features, the normal and hearing-
impaired individuals with low intelligibility could easily be dis-
criminated. However, the discrimination was less easy between
normal and hearing-impaired individuals with medium or high
intelligibility. We conclude that a hearing-impaired individual’s
speech does reflect his hearing loss provided his loss of hearing
has considerably affected the intelligibility of his speech.
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Figure 1: The four features, SlopeMAF , LossCF , SlopeQ10 andBWavg , are plotted in the four rows (top to bottom) against the three
perception and production measurements, AzBio, PTA and nSec, in the three columns (left to right) for our cohort of 29 subjects. Each
subject is assigned a unique integer between 1 and 29. Blue integers denote normal subjects while green, black and red ones denote
hearing-impaired subjects with high, medium and low speech intelligibility respectively (best viewed in color).The plots of AzBio and
PTA vs. SlopeMAF (top row) show that normal subjects have lower SlopeMAF than hearing-impaired ones with medium or low
intelligibility which is consistent with the findings in [29]. LossCF is higher for almost all hearing-impaired subjects than normal
ones; the low intelligibility subjects have the highest LossCF followed by the medium intelligibility ones (second row). SlopeQ10 is
lowest for low intelligibility subjects followed closely by some of the medium intelligibility ones while the rest have higher slope (third
row). Similarly, BWavg is highest for low intelligibility subjects followed by some of the medium intelligibility ones while the rest
have lower average bandwidth (bottom row). The vertical dotted line draws a threshold between normal and hearing impaired subjects.
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