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Abstract
We propose improved Deep Neural Network (DNN) training
loss functions for more accurate single keyword spotting on
resource-constrained embedded devices. The loss function
modifications consist of a combination of multi-task training
and weighted cross entropy. In the multi-task architecture, the
keyword DNN acoustic model is trained with two tasks in par-
allel - the main task of predicting the keyword-specific phone
states, and an auxiliary task of predicting LVCSR senones. We
show that multi-task learning leads to comparable accuracy over
a previously proposed transfer learning approach where the key-
word DNN training is initialized by an LVCSR DNN of the
same input and hidden layer sizes. The combination of LVCSR-
initialization and Multi-task training gives improved keyword
detection accuracy compared to either technique alone. We also
propose modifying the loss function to give a higher weight
on input frames corresponding to keyword phone targets, with
a motivation to balance the keyword and background training
data. We show that weighted cross-entropy results in additional
accuracy improvements. Finally, we show that the combina-
tion of 3 techniques - LVCSR-initialization, multi-task training
and weighted cross-entropy gives the best results, with signif-
icantly lower False Alarm Rate than the LVCSR-initialization
technique alone, across a wide range of Miss Rates.

Index Terms: keyword spotting, DNN, Deep Neural Network,
multi-task learning, weighted cross entropy

Deep Neural Network (DNN) acoustic models have quickly be-
come the state of the art in speech recognition in recent years
[1]. They have generally been found to be more robust to
speaker and environmental variations than the earlier widely
used Gaussian Mixture Model (GMM) based acoustic models
[2]. DNNs are able to make effective use of parameters to learn
powerful hidden layer representations, so that with increasing
amounts of training data and larger networks, the test accuracy
on the given task can generally be continuously improved. In
a practical speech recognition system there are limits on the
size of the network that can be deployed due to computational
cost and desired latency considerations. It is possible to deploy
larger networks using faster implementations that exploit quan-
tization and SIMD instructions on CPUs [3]. However, when
dealing with practical constraints on size of the network or the
amount of data available for a task, it is necessary to make use
of improved training techniques to obtain robust models that
have better generalization performance. Some improved train-
ing techniques include transfer learning, multi-task learning,
and knowledge distillation [4, 5, 7].

Figure 1: Multi-task architecture

Transfer learning is a general approach in machine learning
for improving the performance on a main task by knowledge
transfer from a related task that was previously learned. In the
context of DNNs, the input and hidden layers of the network
for the main task are initialized from a network of the same
input and hidden layer sizes that has been trained for the related
task [5, 6]. A better initialization of the training of the main
task results in a better optimum and improves generalization
performance.

In multi-task learning (MTL), two or more related tasks are
jointly learned with the goal of improving generalization and
performance on one or more of the tasks [4]. For DNNs, MTL is
achieved by sharing hidden layers between the tasks, and having
a separate output layer branch for each task, as shown in figure 1
for two tasks. MTL prevents overfitting by learning representa-
tions in the shared hidden layers of the network that generalize
better as they are useful in performing more than one task. At
evaluation time, the additional layers for the auxiliary tasks that
are not shared with the main task can be stripped away as they
are no longer needed. Therefore, while MTL leads to increased
training time due to the additional parameters needed for the
auxiliary tasks, there is no increase in computation at test time.
MTL and transfer learning are finding numerous applications
within speech research, including general ASR [10, 9], multi-
lingual ASR [5, 8], keyword spotting [6], robust ASR [11, 13]
and speech separation [12].

In this paper, we propose a novel application of MTL to
improve the accuracy of keyword spotting from speech using
DNNs. We compare it against an earlier proposed transfer
learning method [6] and show that it gives comparable perfor-
mance. Both the transfer learning approach and the multi-task
approach give significant accuracy improvements over a stan-
dard training recipe that includes only initialization by layer-
wise pre-training. We also identify the need to balance the key-

1. Introduction 

Copyright © 2016 ISCA

INTERSPEECH 2016

September 8–12, 2016, San Francisco, USA

http://dx.doi.org/10.21437/Interspeech.2016-1485760



word and background speech data in the training set, and pro-
pose to weight the cross-entropy loss higher for feature frames
from keywords. We show that the combination of transfer learn-
ing, MTL and weighted cross entropy gives the best results.

The paper is organized as follows. In Section 2 we give a
brief review of the literature on the keyword spotting problem.
In Section 3 we describe the proposed modifications to the loss
function, including the multi-task, weighted cross-entropy and
their combination. In Section 4 detailed experimental results
with the proposed loss functions are presented. We conclude
with a brief summary in Section 5.

2. Keyword Spotting
Keyword (KW) spotting in continuous speech has been an area
of research for more than two decades [14]-[23]. In much of
recent work, latency and computation are not concerns, and of-
fline large vocabulary speech recognition systems can be used
to decode the audio utterances and create transcripts or lattices
of words and/or phones which can then be searched for the
presence of the keyword(s) of interest [14]-[16]. An earlier ap-
proach, which still finds application in online low-latency and
computation-constrained systems, uses Hidden Markov Mod-
els (HMMs) for both the keyword and the background non-
keyword speech or noise audio [17, 18, 19]. The background
model is also sometimes called the filler or garbage model, and
may be a simple speech/non-speech loop HMM [18], or may
involve a loop over phones or words [21]. With the growing
success of deep learning in recent years, novel techniques using
Deep Neural Networks (DNNs) and Recurrent Neural Networks
(RNNs) that do not involve HMMs have also been proposed
[22, 6, 23].

In this paper, we are concerned with single KW spotting
systems on resource-constrained embedded devices.

In this context, we study KW spotting using the well known
HMM based approach with KW and filler/background HMMs
[17, 18, 19]. An example KW spotting decoding FST for the
KW “Alexa” is shown in Figure 2, with six phones in its pro-
nunciation. Note that single state HMMs for the phones are
shown for simplicity.

Figure 2: HMM-based Keyword Spotting

The HMM decoder uses a Deep Neural Network (DNN)
acoustic model and a KW is hypothesized if the final state of
the KW FST is reached. The output layer of the KW DNN
models the HMM states of the keyword(s) of interest (i.e., KW-
specific phone state distributions), and the two 1-state back-
ground phones - Speech and Non-speech. Various transition pa-
rameters and exit penalties in the KW and Background HMMs
can be tuned for better accuracy, and a Detection Error Tradeoff
(DET) curve can be obtained by plotting the lowest achievable
False Alarm Rate (FAR) at a given Miss Rate (MR)/False Re-
ject Rate (FRR). The DET curves in Figures 3-7 were obtained

in this manner.
In our system, audio is divided into overlapping frames of

25 ms with a frame shift of 10 ms. The basic acoustic fea-
tures per frame are the well known Log mel-Filter-Bank En-
ergies (LFBEs) which are obtained by passing the magnitude
squared of the FFT of the windowed signal through the Mel fil-
terbank and taking the logarithm [24]. The input to the DNN
acoustic model typically consists of several stacked frames of
LFBEs.

3. Loss functions for DNN Training
The basic loss function that is optimized during the training of
DNN acoustic models is the cross-entropy loss [25]. We con-
sider loss functions for a single frame n for simplicity of nota-
tion. The cross-entropy loss for feature vector xn is given by:

Ln(W) = − logycn(xn,W) (1)

where W are the parameters of the DNN, yk(xn,W) is the
kth output of the final softmax layer of the DNN, and cn is the
class label assumed to be in the range {1, 2, . . . ,K}.

3.1. Multi-task Training

In multi-task training with two tasks, let L(1)
n (W) and

L(2)
n (W) be loss functions for the two tasks, defined similar

to Eq. 1. We use a multi-task loss function of the form:

Ln(W) = γ L(1)
n (W) + (1− γ) L(2)

n (W) (2)

where 0 ≤ γ ≤ 1.

3.2. Class-weighted cross-entropy

In the case of KW spotting, the amount of data available for
the KW is usually much less than the amount of data avail-
able for the background speech and non-speech. It is also not
clear a-priori which of the background data would be useful,
and therefore it is preferable to use all the available data for
training and not filter out background data. However, since the
background data dominates the training set, it may be desir-
able to weight the KW data higher in the training. One simple
way of achieving this is by weighting the loss function for a
frame higher if the label for the frame belongs to one of the
KW phone states. More generally, we define a weight vector
w ∈ R

k with elements wk > 0 defined over the range of class
labels k ∈ {1, 2, . . . ,K}. We then define the class-weighted
cross-entropy (CW-XENT) as follows:

Ln(W) = −wcn logycn(xn,W) (3)

3.3. Combined loss function

We can also consider loss function that is a combination of the
multi-task and class-weighted cross-entropy loss functions as
follows:

Ln(W) = −γwcn logy(1)
cn (xn,W)−(1−γ) logy(2)

ln
(xn,W)

(4)
Here, we have included class-specific weights only for the

main task as that is what we have studied in this paper.

4. Experimental Results
Our KW spotting system is tuned and evaluated on Dev and
Test sets that contain data collected under different conditions.
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Some audio streams in the Dev and Test sets contain the KW
and others contain speech utterances without the KW, or just
background speech and noise. The evaluation sets contain sev-
eral thousand occurrences of the keyword(s) of interest, so that
the results are statistically significant.

The GPU-based distributed DNN trainer described in [26]
was utilized for many of the experiments reported here. In the
results, ”Random-initialization” of DNNs refers to light super-
vised pre-training in a layer-wise manner on a small subset of
training data.

We present results in the form of DET curves along with
Area Under the Curve (AUC) numbers, which will allow com-
parison of various systems in terms of performance impact.
Note that since we present AUC numbers for DET curves in-
stead of ROC curves, lower AUC numbers correspond to better
performance.

All DET curves in this paper only show false alarm rates up
to a multiplicative constant, due to the sensitive nature of this
information. The plots and the AUC values still accurately pre-
serve the relative performance improvements between different
systems across a range of reasonable operating points.

4.1. Baseline results with LVCSR-initialization

The baseline we use is the transfer learning approach proposed
in [6], where the KW DNN is initialized by an LVCSR DNN of
the same input and hidden layer sizes. An output layer of the
appropriate size is lightly pre-trained in a supervised manner,
before fine-tuning of the full network with back-propagation.
While the DNN architecture and KW detection algorithm in [6]
are different, we found the transfer learning approach to be ef-
fective, as shown in Figure 3. Over a range of FA Rates of in-
terest, we find that LVCSR-initialization gives around 15-20%
relative reduction in Miss Rate.relative reduction in Miss Rate.

Figure 3: Effect of transfer learning by LVCSR-initialization of
KW DNN: DET curves on the held-out Test Set.

4.2. Results with multi-task architecture

We studied multi-task learning (MTL) with KW and LVCSR
targets, with two different topologies for the networks. The first
multi-task topology had 4 shared hidden layers between the two
tasks and only separate output layers as was shown in Figure
1. The second multi-task topology had 3 shared hidden layers
between the two task and one separate hidden layer for each of
the tasks before their respective output layers. The output layers
are affine transforms followed by a softmax as is typical.

For each architecture, the weight of the KW task (γ in
Equation 2) was varied and the DET curve results were plot-
ted on the Dev set. Recall from Equation 2 that the weight on

Figure 4: Results of varying weight γ on the KW task in multi-
task training; 4 shared hidden layers; DET curves on Dev Set.

the auxiliary LVCSR task is (1− γ). Figure 4 shows the results
for the multi-task topology with 4 shared layers, where γ = 0.9
was found to be optimal. For the multi-task topology with 3
shared layers, γ = 0.75 found to be optimal for smaller train-
ing data sets, while γ = 0.9 was found to be optimal on larger
training data sets. In general, we also observed that 3 shared
hidden layers gives slightly better results than 4 shared hidden
layers on different training sets, although the optimal relative
weights of the two tasks vary slightly.

4.3. Comparison of LVCSR-initialization and MTL

Figure 5 shows DET curves comparing the transfer learning ap-
proach proposed in [6], i.e. LVCSR-initialization of the KW
DNN vs. the (KW, LVCSR) multi-task DNN proposed in this
paper. This investigation was on a larger training data set, where
the multi-task configuration was fixed at 3 shared and 1 separate
hidden layers, and γ = 0.9 in the multi-task loss function, based
on tuning experiments on the Dev set. It is seen that the multi-
task DNN is comparable to or performs slightly worse than the
LVCSR-initialized DNN.

Figure 5: Comparison of LVCSR-initialization vs. Multi-task
training; DET curves on the held-out Test Set.

4.4. Combination of LVCSR-initialization and MTL

We also investigated the combination of LVCSR-initialization
followed by multi-task training.The DET curve results are
shown in Figure 6, over a range of miss rates of interest. Corre-
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sponding Area Under the Curve (AUC) measures were obtained
for the plots in Figure 6 over a range of FA rates, and the num-
bers given in Table 1.

First, we see that the proposed Multi-task approach is
comparable to or slightly worse (1.5% relative in AUC) than
LVCSR-initialization, on the held-out test set. We also find that
the combination of LVCSR-initialization and Multi-task train-
ing can give an accuracy improvement over either technique
alone, with relative reductions in AUC of 7.5% and 8.9% over
LVCSR-initialization only and Multi-task training only, respec-
tively.

Figure 6: Results on held-out Test set, with combination of
LVCSR-initialization and Multi-task training.

4.5. Results of combination with class-weighted cross-
entropy training

We also investigated the class-weighted cross-entropy loss func-
tion that was described in Section 3.2, in the context of LVCSR-
initialization and MTL with (KW, LVCSR) targets. In general,
we find that for training data sets that are unbalanced with re-
spect to the numbers of KW and non-KW utterances, i.e., where
the number of KW utterances is relatively small, CW-XENT
with a higher weight on the KW frames gives large improve-
ments. On the data set that is considered here, the imbalance
between KW and non-KW data is not as large, and the improve-
ments are smaller. We first tuned the weight on the KW classes
in CW-XENT on the dev set, and then evaluated the optimal
KW weight of 1.5 on the held out Test set. The resulting DET
curve and corresponding AUC number on the Test set are shown
in Figure 7 and Table 1 respectively.

We see that CW-XENT can give an additional small im-
provement in accuracy on top of LVCSR-init + Multi-task.
Overall, the combination of the three techniques: LVCSR-init
+ Multi-task + CW-XENT, gives 11.6% relative reduction in
AUC over LVCSR-init alone, and on the held out Test set. The
total relative reduction with respect to a randomly-initialized
single task DNN was 26%. Thus, the multi-task training and
CW-XENT loss functions proposed in this paper are seen to be
effective in improving accuracy for KW detection.

5. Summary
In this paper we have proposed and studied a combination of
multi-task training and weighted cross entropy DNN training
loss functions for more accurate keyword (KW) spotting. In
the multi-task architecture, the KW DNN acoustic model is
trained with two tasks in parallel - the main task of predict-
ing the KW-specific phone states, and an auxiliary task of pre-

Figure 7: Results on held-out Test set with combination of
3 techniques: LVCSR-initialization, Multi-task training and
Class-weighted cross-entropy.

Table 1: Area Under the Curve (AUC) comparison of DET plots
from Figure 7, on held out Test set. (Range of FARs used to
compute AUC was 0.5x to 5x)

Model AUC Relative
Reduction

Random-init Single-task 0.239x 0%

LVCSR-init Single-task 0.199x 17%

Random-init Multi-task, 0.202x 16%

LVCSR-init + Multi-task 0.184x 23%

LVCSR-init + Multi-task
+ CW-XENT, KW wts=1.5 0.176x 26%

dicting LVCSR senones. We first showed that this multi-task
approach leads to comparable accuracy with respect to a previ-
ously proposed transfer learning approach where the KW DNN
is initialized by an LVCSR DNN of the same input and hid-
den layer sizes. We also showed that combination of LVCSR-
initialization and (KW, LVCSR) Multi-task training gives accu-
racy improvements over LVCSR-initialization alone, with the
relative reduction in AUC being around 7.5% on the training
data sets studied.

We also proposed modifying the DNN training loss func-
tion to give a higher weight on input frames correspond-
ing to KW phone targets, with a motivation to balance the
KW and background training data. We showed that weighted
cross-entropy results in additional accuracy improvements.
We showed that the combination of 3 techniques: LVCSR-
initialization, Multi-task training and Class-weighted cross-
entropy training gives the best results. Compared to the
LVCSR-initialization technique alone, the combination of 3
techniques results in significantly lower Miss Rate over a range
of False Alarm Rates, with a relative reduction in AUC of
11.6% on a held out Test set. Thus, the multi-task training and
weighted cross-entropy loss functions proposed in this paper are
seen to be very effective in improving accuracy for KW detec-
tion.
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