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Abstract
Native-language identification is the task of determining a
speaker’s native language based only on their speeches in a sec-
ond language. In this paper we propose the use of the well-
known i-vector representation of the speech signal to detect
the native language of an English speaker. The i-vector rep-
resentation has shown an excellent performance on the quite
similar task of distinguishing between different languages. We
have evaluated different ways to extract i-vectors in order to
adapt them to the specificities of the native language detection
task. The experimental results on the 2016 ComParE Native
language sub-challenge test set have shown that the proposed
system based on a conventional i-vector extractor outperforms
the baseline system with a 42% relative improvement.
Index Terms: native language, i-vector, computational paralin-
guistics, ComParE.

1. Introduction
The task of recognizing the native language of a speaker or his
mother tongue is called Native language identification (NLI).
This task can be considered similar to the Language Identifi-
cation task (LID), which consists of identifying the language
spoken in a given speech segment. It is well known that even if
a multilingual speaker is able to speak correctly a second lan-
guage (L2), his native language (L1) can still influence the pro-
nunciation of the second one. This speaking behavior can be
seen as soft biometrics information and it can be helpful for
identifying the speaker identity. An automatic NLI system can
be useful for several other speech applications such as speech
and speaker recognition. In such applications, the speaker?s ac-
cent is considered as a nuisance that needs to be compensated.

Several levels of information extracted from speech sig-
nal have been studied for NLI. Acoustics features and prosodic
cues [1] are considered the most popular characteristics for NLI.
Phonetic characteristics such as phonemes frequent appearance
and their duration also provide a good indication of speaker?s
mother tongue [2]. Note that the same task can be achieve by
analysing the text instead of the speech signal [3].

Since seven years ago, the i-vector framework became
the state-of-the-art speech representation for text-independent
speaker recognition as well as for many other speech related
fields such as language recognition [4, 5, 6, 7] and speaker adap-
tation for automatic speech recognition [8]. The i-vector is an
elegant way to represent speech segments of variable lengths in
the same space of moderate dimension (typically in the range
of hundreds) [9]. In this space, several kind of machine learn-
ing approaches can be applied to solve different kind of audio
classification problems. Therefore, the i-vector will be our main

speech representation investigated in this NLI challenge.
In this paper we propose two different i-vector extrac-

tion strategies to the problem of native language detection:
language-independent and language-dependent. In the former, a
unique language-independent i-vector extractor is estimated for
all the native language classes. The latter strategy consists of
training one native language-dependent i-vector for each native
language class [10]. Furthermore, we also evaluated three nor-
malization strategies for the language-dependent i-vector repre-
sentation. The different i-vector implementations are evaluated
and compared within the scoop of the ninth edition Computa-
tional Paralinguistics Challenge (ComParE) [11, 12].

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the conventional i-vector speech representation
as well as its related intersession compensation methods. Sec-
tion 3 describes the language-dependent i-vector representation
and the three related intersession compensation strategies. In
Section 4, all the experiments and the results are presented and
discussed. Finally, in the last section we present some future
research directions as well as the conclusions of this work.

2. Conventional i-vector framework
The i-vector framework [9] is based on modeling speech seg-
ments using a universal background model (UBM), which is
typically a large Gaussian Mixture Models (GMM) where the
UBM is usually trained on a large quantity of data to repre-
sent general feature characteristics. This model plays the role
of a prior on how all sounds look like. The i-vector approach
is a powerful technique that summarizes all the updates hap-
pening during the adaptation of the UBM mean components to
a given speech recording. All this information is modeled in
a low dimensional subspace referred to as the total variability
space. In the i-vector framework, each speech utterance can
be represented by a GMM supervector, which is assumed to be
generated as follows:

M = m+ Tx (1)

where m is the language and dialect independent supervector
(which can be taken to be the UBM supervector), T is a rect-
angular matrix of low rank and x are the factors that best de-
scribe the utterance-dependent mean offset. The vector x is
treated as a latent variable with the i-vector being its maximum-
a-posteriori point estimate. The subspace matrix T is estimated
using maximum likelihood on a large training set [9]. Figure 1
summarizes the steps used to extract the i-vectors.

It is well known that the i-vector space models a wide va-
riety of variability embedded in the speech signal and this is
mainly due to the fact of using unsupervised methods for the
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Figure 1: Conventional i-vector feature extraction from a given speech signal.
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Figure 2: Per-Native-language i-vector feature spaces.

supervector space dimensionality reduction. In order to ex-
tract any specific information from this space (e.g. the lan-
guage nativeness), task-dependent normalization (i.e. interses-
sion compensation) needs to be performed in the raw i-vector
before carrying out any recognition task. The main objective
of the task-dependent normalization is the mapping of the raw
i-vector into a new space that maximizes only the useful infor-
mation and minimizes the effect of unwanted variability. In the
i-vector context, the most known normalization procedure [13]
is based on a combination of the Linear Discriminant Analysis
(LDA) followed by the Within Class Covariance Normalization
(WCCN) [14]. Moreover, it has been found that the normaliza-
tion of the i-vector to the unit length (i.e. norm = 1) is helpful
for speaker recognition systems [15]. The detailed procedure of
i-vector space normalization adopted in this work is depicted in
Algorithm 1.

3. Language-dependent i-vector

A class-dependent i-vector extractor is trained using each class
dependent subset of data individually in order to model the class
aspect in our native language dataset. This approach is sim-
ilar to an approach that has been already successfully imple-
mented for the problem of language Identification [10]. In this
modeling, eleven i-vector extractors (including UBMs and the

Algorithm 1 i-vector space normalization
1: Normalize the length of the i-vector x to one.
2: Map the length normalized i-vector to the LDA subspace

using the optimal dimension (in our case 10 was the best
dimension).

3: Normalize again the length of the LDA normalized i-vector.
4: Rotate the length-, LDA- and length-normalized i-vector

using the Cholesky decomposition of the inverse Within
Class Covariance.

total variability matrices T ) were trained on the ComParE na-
tive language training set (i.e. the ETS Corpus Of Non-Native
Spoken English) [11]. All the obtained language-dependent
subspaces can be exploited in two different ways: i) Each
language-dependent subspace can be processed individually; ii)
All language-dependent i-vectors can be concatenated to create
a larger and unique subspace (c.f. Figure 2). In this work the
dimension of the language-dependent space is chosen to be 50,
which means that the dimension of the concatenated space is
50× 11 = 550.

We have adopted three different strategies to deal with un-
desirable variability in the different i-vector spaces. However,
all these strategies are based on the same normalization tech-
nique as described in Algorithm 1. The first strategy consists
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Table 1: Unweighted Average Recall (UAR %) for the development and test sets.

Conventional
i-vectors

Language-dependent
i-vector Baseline

Norm. Strategy I Norm. Strategy II Norm. Strategy III
Devel Test Devel Test Devel Test Devel Test Devel Test

UBM 512 dim 400 66.8 66.4 - - - - - -

45.1 47.5

UBM 256 dim 50 - - 38.2 - 43.9 - 44.6 -
UBM 128 dim 50 - - 43.2 - 45.9 - 46.9 -
UBM 64 dim 50 - - 51.8 - 45.2 - 49.2 -
UBM 32 dim 50 - - 53.4 - 44.9 - 45.8 -
UBM 16 dim 50 - - 49.7 - 43.6 - 44.9 -

Table 2: Confusion matrix in percent for the development set using the conventional i-vector.

ARA CHI FRE GER HIN ITA JAP KOR SPA TEL TUR
ARA 52 1 6 4 3 5 2 2 4 1 6
CHI 0 62 0 1 4 0 4 10 3 0 0
FRE 3 1 51 8 2 5 2 1 6 0 1
GER 1 4 4 72 0 0 0 1 2 0 1
HIN 0 0 0 0 56 0 0 1 0 26 0
ITA 1 0 9 3 0 72 0 3 5 0 1
JAP 0 6 4 0 1 1 54 16 3 0 0
KOR 1 12 0 1 0 2 15 57 1 0 1
SPA 5 5 9 3 1 13 8 9 39 3 5
TEL 1 0 0 0 22 0 0 2 1 56 1
TUR 1 0 1 5 1 4 3 1 4 1 74

of running the space normalization procedure (c.f. Algorithm
1) directly on the concatenated language-dependent space to
generate a 10-dimensional normalized i-vector. In the sec-
ond strategy, we first apply separately the normalization pro-
cedure to each language-dependent subspace to obtain eleven
10-dimensional normalized i-vectors which are then stacked to
form a single 110-dimensional i-vector. In the third strategy,
we simply carry out the normalization procedure on the output
of the second strategy (i.e. the 110-dimensional i-vector). The
main objective behind this strategy is to map the concatenated
space into a more homogeneous space of dimension 10.

4. Experimental Results
The performance of the proposed approach was evaluated on
the ETS Corpus of Non-native spoken English which includes
more than 64 hours of speech from 5,132 non-native speakers of
English, with eleven different L1 backgrounds (Arabic (ARA),
Chinese (CHI), French (FRE), German (GER), Hindi (HIN),
Italian (ITA), Japanese (JAP), Korean (KOR), Spanish (SPA),
Telugu (TEL), and Turkish (TUR)). The dataset was divided
into three stratified partitions: 3,300 instances (64%) were se-
lected as training set, 965 instances (19%) for the development
set, and 867 responses (17%) used as test data. As measure of
performance, we employ Unweighted Average Recall (UAR).
For more details on this dataset please refer to [11].

The i-vectors have been extracted using Kaldi, a free open
source toolkit for speech recognition [16]. The experiments
have been conducted with support vector machine (SVM) us-
ing the sequential minimal optimization (Weka toolkit [17]) and
with neural networks (NN) using the TensorFlow library [18].

4.1. Results with SVM

The fist step of the i-vector estimation process consists of ex-
tracting a sequence of short-term features (Figure 1). In this
work, the Mel Frequency Cepstral Coefficients (MFCCs) aug-
mented by their Shifted Delta Cepstral (SDC) are used as short-
term features. The SDC features are able to model long-term
speech temporal information which seems to be very useful for
the Language Identification task [19]. The parameters used to
to generate the SDC features were set as follows: The number
of the cepstral coefficients was set to 20 (i.e. static MFCC); the
distance between blocks was set to 3; the size of delta advance
and delay was set to 1 and the number of blocks in advance of
each frame to be concatenated was set to 7. This setup produces
feature vectors of 160 dimensions.

Table 1 shows the results achieved by both conventional i-
vector and language dependent i-vectors. A linear kernel had
been used for all experiments. The best result was achieved with
the language-independent i-vector (UAR of 66.4%) which also
outperforms the baseline system (UAR of 47.5%). Regarding
the language-dependent i-vectors, since the amount of data per
language is very limited, several experiments have been con-
ducted with different UBM sizes. It is not clear from the differ-
ent UBM size performances that there is an optimal configura-
tion and it mainly depends on the normalization strategy. The
overall results show that the language-independent approach
seems to be less effective for this task than using language-
independent i-vectors.

The i-vector extractor used in these experiments is based
on GMMs with full covariance UBMs, which requires a large
amount of data for training. In another set of experiments, we
have used UBMs with diagonal covariance matrices. Unfortu-
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nately, no improvement has been observed. Another possibility
to explore is the reduction of the MFCC-SDC features that are
quite large (160 dimensions) for a GMM.

4.2. Results with NN

Table 3 summarizes the two best results obtained with NNs.
These results are very close to those obtained with a SVM with
i-vector as input, with a slight improvement of 0.2%. The best
architectures for the NNs were with a single hidden layer and
with two hidden layers. However, both architectures achieved
very close UARs. The best result was achieved by combining
two neural networks. The first neural network had one hidden
layer of 1024 neurons with the sigmoid activation function and
11 neurons in the softmax output layer. The output of such a
NN was concatenated with the i-vector and used as input for a
second NN with one hidden layer of 256 neurons. This archi-
tecture led to the best result on the development set with a UAR
of 68.4%.

Table 3: Results on neural network (NN) measured by the Un-
weighted Average Recall (UAR %).

Description UAR (Devel)
ivec 67.0%
ivec + dist 68.4%

4.3. Combining SVM and NN

The confusion matrix (Table 2) generated by the system using
both the i-vector and the output layer of a NN with 256 neurons
in a single hidden layer shows that there is a high confusion be-
tween some languages (e.g. Hindi and Telugu). The confusion
matrices of other systems exhibit the same behavior, meaning
that the combination should improve the results.

Therefore, the last experiments were carried out to explore
the use of the NN as a feature extractor for the SVM. Table 3
shows the main results achieved with this approach. A conven-
tional i-vector was used as input for a single hidden layer NN.
Results with two or three hidden layers are not reported because
they were very similar or worst than those obtained with a single
hidden layer.

Table 4: Results with NN as feature extractor for the SVM
(measured by the Unweighted Average Recall (UAR %)).

Description UAR (Devel)
1024 neurons 66.5%
512 neurons 67.4%
256 neurons 67.6%
Output dist, 1024 neurons 67.2%
Output dist, 256 neurons 67.2%
ivec + dist (256) 66.9%
ivec + dist +output (256) 66.4%
ivec + dist (1024) 67.3%
ivec + dist (1024) on NN 68.4%

The experiments use the output of the hidden layer (before
the activation function) as input of the SVM. The best UAR
achieved with this scheme is 67.6%, which is almost 1% higher
than the best result achieved by the SVM using the i-vector as
input. This result shows that the NN is able to extract com-
plementory information from the i-vector. Other experiments

have explored the use of NN output layer (after the softmax) as
input of the SVM. The results achieved with this schema are al-
most as good as those obtained with the hidden layer and better
than the best result obtained with the SVM alone. Note that this
result also represents a small improvement over the NN alone
(67%). The third experiment reported in Table 3 has explored
the combination of the i-vector and the features of NN for the
SVM. This approach led to a very small improvement with a
UAR of 67.3%. Finally, the last experiment was to use another
NN with the concatenation of the i-vector and the NN output
layer as input. This configuration achieved the best result on
the development set with a UAR of 68.4%.

4.4. Results on the test set

Considering the limited number of five trials to evaluate the pro-
posed approach on the test set for the 2016 ComParE Native
language sub-challenge, we have selected the approaches that
have provided the highest UAR on the development set. The
first three rows of Table 5 correspond to the best approaches on
the development set using the SVM classifier. The fourth row
was achieved by a SVM for which the input is the concatenation
of SVM output confidence scores and NN output distribution.
Both classifiers have a conventional i-vector as input. Surpris-
ingly, we did not have observed any improvement with such a
fusion of scores for the test set. The fifth row of Table 5 cor-
responds to the approach for which we have achieved the best
UAR on the development set. Unfortunately, such an approach
did not provided the best result on the test set as we should ex-
pect. Compared to the other approaches, it seems that the NN
was overfitted during the training process. Finally, the last row
shows the UAR obtained by the official baseline system [11].

Table 5: Results on the test set by the Unweighted Average Re-
call (UAR %).

Description UAR (Test)
ivec on SVM 66.4%
ivec on NN 66.6%
ivec + dist (1024) on SVM 67.4%
score fusion on SVM 67.4%
ivec + dist (1024) on NN 67.1%
Official baseline [11] 47.5%

5. Conclusions
In this paper we have explored two different implementations of
the well-known i-vector representation of speech to deal with
the problem of native language (L1) identification for an En-
glish (L2) speaker. The first implementation based on the con-
ventional language-independent i-vector outperforms by far the
baseline system (UAR of 66.4% vs. 47.5% on the test set) on
the development and test sets of the ComParE 2016 challenge.
The combination of i-vector with features extracted by a NN
using the same i-vector representation as input led to UAR up
to 67.4% on the test set, an improvement of 1% absolute.
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