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Abstract 
We use tandem features and a fusion of four systems for text-
dependent speaker verification on the RedDots corpus. In the 
tandem system, a senone-discriminant neural network 
provides a low-dimensional bottleneck feature at each frame 
which are concatenated with a standard Mel-frequency 
cepstral coefficients (MFCC) feature representation. The 
concatenated features are propagated to a conventional 
GMM/UBM speaker recognition framework. In order to 
capture complementary information to the MFCC, we also 
use linear frequency cepstral coefficients and wavelet-based 
cepstral coefficients features for score level fusion. We report 
results on the part 1 and part 4 (text-dependent) tasks of 
RedDots corpus.  Both the tandem feature-based system and 
fused system provided significant improvements over the 
baseline GMM/UBM system in terms of equal error rates 
(EER) and detection cost functions (DCFs) as defined in the 
2008 and 2010 NIST speaker recognition evaluations. On the 
part 1 task (impostor correct condition) the fused system 
reduced the EER from 2.63% to 2.28% for male trials and 
from 7.01% to 3.48% for female trials. On the part4 task 
(impostor correct condition) the fused system helped to 
reduce the EER from 2.49% to 1.96% and from 5.9% to 
3.22% for male and female trials respectively. 
 
Index Terms: speaker verification, neural networks, GMM-
UBM, tandem feature, RedDots  

1. Introduction 
In a speaker verification system the goal is to verify the 
claimed identity of an unknown speaker. Depending on the 
constraints imposed on the enrolment and test recordings it 
can be categorized as text-dependent or text-independent. 
Text-dependent speaker verification has gained a lot of 
research interest over the last few years in the speaker 
recognition community. In text-dependent speaker 
verification the classes to be recognized are speaker-lexical 
contents combinations rather than speakers as in text-
independent speaker verification [4]. The lexical contents can 
be common for all speakers or unique. Because of the prior 
knowledge of the constrained phonetic contents text-
dependent systems can provide better recognition accuracy 
for relatively short duration (1-3 seconds) enrolment and test 
recordings. 
Early work on text-dependent speaker verification usually 
employed the dynamic time warping (DTW) method, which 
performs the speaker verification task by aligning enrolment 
and test feature sequences of different lengths and then 

applying temporal template matching [5]. Some recent work 
on text-dependent speaker verification [2-4, 6-10] uses 
GMM/UBM [2-4, 6-11], Hierarchical multi-Layer Acoustic 
Model (HiLAM) [11], Hidden Markov Model [7], Joint 
Factor Analysis (JFA) [4, 6-9] models on various text-
dependent corpora (such as RSR2015 [11], CSLU, and a 
proprietary dataset collected at Concordia University [7]). As 
for the UBM/i-vector/PLDA system, direct application to the 
text-dependent condition is not as satisfactory as the text-
independent case unless a large amount of background data is 
available [2, 12-14].  
The RedDots challenge is an initiative of the RedDots project 
which was rolled out on 29 January 2016. The purpose of this 
challenge is to stimulate research efforts for text-dependent 
speaker verification over four parts (part 1- part 4) of 
RedDots corpus [1].   
In this paper, we employ tandem features in the GMM/UBM 
framework [20] to improve the performance of text-
dependent speaker verification on RedDots challenge corpus. 
Tandem features are obtained by concatenating deep 
bottleneck features, supplied by a senone-discriminant deep 
neural network, with Mel-frequency cepstral coefficients 
(MFCC) feature and then reducing the feature dimension 
using principal component analysis. In order to capture 
complementary information for score level fusion we also 
develop three systems based on MFCC (baseline system), 
linear frequency cepstral coefficients (LFCC) and wavelet-
based cepstral coefficients (WCC) features. Although 
GMM/UBM system does not take into account lexical 
information in the same way as a HMM system such as 
HiLAM [11], it still shows a promising performance in text-
dependent speaker verification. 
 

2. Extraction of tandem features 
Fig. 1 presents a schematic diagram for extracting tandem 
features from the deep neural network (DNN) bottleneck and 
MFCC features. A DNN can be used as a means of extracting 
features, known as bottleneck features, for used by a 
classifier. Bottleneck features are extracted by placing a 
hidden layer, which has relatively small number of nodes 
compared to the size of other layers, in between the input and 
output layers [21-22]. In speech related applications these 
features are widely being employed for improving 
recognition accuracy [21-25]. In order to extract bottleneck 
features from the RedDots [1] and LibriSpeech [18] corpora 
we trained a senone discriminant DNN using 1141 hours of 
audio recordings from the Fisher and Switchboard corpora. 
As there is no background data in the RedDots challenge 
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corpus we use LibriSpeech (11126 recordings from 146 
speakers) as our background data to train the UBM. The 
inputs to the DNN are TRAP (TempoRAl Pattern) [26] 
feature parameters computed from 31 frames (15 frames from 
each side of the current frame) of the log filterbank features. 
The DNN has 4 hidden layers (with sigmoid activation 
function) of size 1000 nodes each and a linear bottleneck 
layer of size 64 (2nd to last hidden layer). The output layer, 
which is the classification layer, is a softmax of dimension 
3925 i.e., the output layer computes posteriors for 3925 
senones. The models were trained by cross-entropy criterion 
followed by 2 iterations of MMI (or sequence) training. 

Figure 1: Extraction of tandem features.  

Once the senone discriminant DNN is trained the bottleneck 
features for all RedDots and background data (LibriSpeech) 
are extracted. 40-dimensional MFCCs (20 static including the 
log energy + 20 deltas) are also extracted for the above 
mentioned corpora. Features are normalized using short-time 
mean and variance normalization with a window of 151 
frames (75 frames from each side of the current frame). 
Tandem features are then obtained by concatenating this high 
level (i.e, bottleneck) and low level spectral features (i.e., 
MFCC) and reducing the dimension by applying principal 
component analysis (PCA). The tandem features are 
propagated to a standard GMM/UBM speaker verification 
framework.    

3. Baseline system 

Our baseline system for text-dependent speaker verification 
task is based on MFCC (Mel-frequency cepstral coefficients) 
features and uses the conventional GMM/UBM speaker 
recognition framework. MFCC is the most widely used form 
of feature extraction for speech and speaker recognition. 
MFCC processing begins with pre-emphasis, typically using 
a 1st order high-pass filter. Short-time Fourier Transform 
analysis is performed using a hamming window, and 
triangular shape Mel-frequency integration is performed for 
auditory spectral analysis. The logarithmic nonlinearity stage 
follows, and the final features are obtained through the use of 
a Discrete Cosine Transform (DCT). Static feature dimension 
is 20. The log energy computed from the raw speech signal is 
included instead of 0-th cepstrum. Final 60-dimensional 
MFCCs are obtained by appending delta and double delta 
coefficients and normalizing the features with a STMVN 
method.  

4. Complementary systems for fusion 
Score level fusion of multiple systems that carry 
complementary information to each other is widely used in 
speaker recognition systems. In order to capture 
complementary information to the MFCC, we also develop 
linear frequency cepstral coefficients (LFCC) and wavelet-
based cepstral coefficients (WCC) features-based systems to 
perform score level fusion. 
The LFCC features extraction follows the same processing 
steps as the MFCC. The only difference is that in LFCC 
linear frequency filterbank are used in place of Mel-
frequency filterbank.  It has been found in [17] that the LFCC 
features help to reduce error rates when fused with MFCC in 
the score level. 

4.1. Wavelet-based cepstral coefficients 
The wavelet transform is a transformation that provides time-
frequency representation of a signal. In this work Daubechies' 
3 tap filters are used to compute 6 level wavelet transform 
[15]. For a given wavelet tree the wavelet packet transform 
(WPT) is computed. This yields a sequence of subband 
signals (or WPT coefficients) at the leaves of the tree. Let 

( , )x c n  represent the c-th subband signal, where c  is 
subband index and n is the sample or WPT coefficient index. 
Standard NEO of ( , )x c n  can be expressed as a special case 
of the following k-th order (k=0,1,2,...) and l-th lag 
(l=1,2,3,...) generalized discrete energy operator: 

      
( )( ) ( ) ( )

( ) ( )
, , , , ...

                       , , .
k l x c n x c n x c n k

x c n l x c n k l

Ψ = +

− − + +
                    (1) 

For k=0 and l=1, eqn. (1) reduces to the standard NEO. Since 
NEO is an energy operator and energy is a positive quantity, 
in order to avoid any negative values in eqn. (1) (if 

( ) ( ) ( ) ( ), , , ,x c n x c n k x c n l x c n k l+ < − + + for k=0, 
l=1) we have taken the absolute values of eqn. (1) 
The nonlinear energy operator (NEO) is applied to the WPT 
coefficients and the output of NEO is averaged to get the 
subband energy. The NEO approach has many attractive 
features such as simplicity, efficiency, and adaptability to 
instantaneous signal variations [16]. 

Figure 2: Wavelet-based cepstral coefficients (WCC) 
extraction. 

The logarithmic nonlinearity stage follows, and the final 13-
dimensional static WCC (including the log energy) features 
are obtained through the use of a Discrete Cosine Transform 
(DCT). Delta and double delta coefficients are appended 
making 39-dimensional WCC features. Short time mean and 
variance normalization is applied to normalize the features. 
Fig. 2 shows overall processing steps for WCC features.  
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5. Experiments 
A Gaussian Mixture Model - Universal Background Model 
(GMM/UBM) framework [20] was used as the backend for 
the text-dependent speaker verification tasks. Experimental 
results are reported on the part 1 and part 4 (text-dependent) 
of the RedDots corpus [1] under three types of nontarget 
trials as depicted in table 1. Based on tandem, MFCC, LFCC 
and WCC features four sub-systems denoted as Tandem 
system, MFCC, LFCC, and WCC, respectively, were 
developed.  A fused system was also developed by fusing the 
scores of these sub-systems. Performance evaluation metrics 
used in this work are: the Equal Error Rate (EER), the old 
detection cost function (DCF08) and the new detection cost 
function (DCF10) as defined in NIST speaker recognition 
evaluation of 2008 and 2010, respectively. 

Table 1. Definition of target trials and three types of 
nontarget trials: target correct (TC), target wrong 
(TW), impostor correct (IC), impostor wrong (IW)  

Target trials 
TC  Target speaker pronouncing the correct lexical 

contents 
Three types of Nontarget trials 

TW Target speaker pronouncing the wrong lexical 
contents 

IC Impostor pronouncing the correct lexical contents 
IW Impostor pronouncing the wrong lexical contents 

5.1. RedDots challenge corpus 
The RedDots corpus [1, 19] contains audio recordings from 
62 speakers including 49 male speakers and 13 female 
speakers from 21 countries. In the current release of this 
corpus there are 473 male and 99 female sessions. The 
number of recordings per session is 24 and the average 
duration of the recordings is 3 seconds. This corpus is 
comprised of four parts: part 1 consists of 10 sentences 
common to all speakers, part 2 contains 10 sentences unique 
to each speaker, part 3 contains 2 free choice recordings and 
part 4 contains free text sentences that are unique across 
sessions. For part 4 enrollment can be text dependent or text 
prompted. In this work we conducted experiments on part 1 
and part 4 (text dependent) tasks only. Since no development 
(or background) data was released with the challenge corpus 
we used LibriSpeech as background data by taking 11126 
recordings from 146 speakers (female: 73, male: 73).  

5.2. Experimental setup 
A 512-component gender-independent UBM with diagonal 
covariances was trained on all the background data. During 
enrolment a target speaker model is trained by MAP 
(maximum a posteriori) adaptation of the parameters of the 
UBM using the target speaker's enrolment utterances.  For 
UBM adaptation we used single iteration with a relevance 
factor of 2. Each trained speaker model is scored against all 
the test utterances. No score normalization was used. 

5.3. Results and discussion 
In this work we reported text-dependent speaker verification 
results both on male and female trials of the part 01 and part 
04 (text-dependent (td)) of the RedDots challenge corpus. 

Nontarget trials are of three types: impostor correct (IC), 
impostor wrong (IW) and target wrong (TW) as defined in 
table 1. These acronyms are used in reporting the results in 
tables 2-5.  
Tables 2 & 3 present verification results on part 01 task under 
these three types of nontarget trials for the male and female 
trials, respectively. On the other hand tables 4 & 5 present 
verification results on part 04 (td) tasks for the male and 
female trials, respectively under IC, TW and IW nontarget 
types. It is observed from tables 2-5 that on both tasks the 
fused system and tandem system yielded significant 
reduction in error rates over the baseline in all three 
evaluation metrics under IC, TW, and IW nontarget trials 
conditions. Because of the mismatched lexical contents 
tandem system (and hence fused system) is more 
discriminative in TW (i.e., target speaker pronouncing the 
wrong pass-phrase) and IW (i.e., nontarget speaker 
pronouncing the wrong pass-phrase) conditions than in IC 
(i.e., nontarget speaker uttering the correct pass-phrase) 
condition. In the TW and IW conditions the tandem and 
fused systems achieved EER below 1%. In the IC nontarget 
type the lowest EER (2.28%) was obtained the fused system 
for part 1 task - male trials, and for female trials EER 
obtained by this system is 3.48%.   
Although the performance of WCC system is worse than the 
other systems (including the baseline) it seems to carry 
complementary information to other systems. When fused 
with other three systems WCC feature helped to reduce the 
error rates, except in the case of IW where EER of fused 
system (without WCC) is slightly lower than the fused 
system. In order to find out how much the WCC system is 
contributing in the fused system we developed another fused 
system by excluding WCC system’s scores. By comparing 
the results from the last rows of table 5 it is evident that 
wavelet cepstral coefficients feature carries information 
which is complementary to other systems and therefore, 
helped to reduce error rates when fused with other systems. 

6. Conclusions 
In this work we presented tandem features and a fusion of 
four systems for reducing text-dependent speaker verification 
error rates on the tasks of RedDots corpus. The tandem 
features were formed by the concatenation of a bottleneck 
feature, provided by a senone-discriminant deep neural 
network, with a standard Mel-frequency cepstral coefficients 
(MFCC) feature and reducing the feature dimension with the 
help of PCA algorithm. The tandem features were propagated 
to a conventional GMM/UBM framework for text-dependent 
speaker verification. To get benefited from score level fusion 
we also developed MFCC, linear frequency cepstral 
coefficients and wavelet cepstral coefficients features-based 
systems. Reported results on the part 1 and part 4 (text-
dependent) tasks of RedDots corpus showed that both the 
tandem feature-based system and fused system provided 
significant reduction in error rates over traditional baseline 
system in terms of EER (%) and DCF08 and DCF10 metrics 
in impostor correct, impostor wrong and target wrong 
nontarget trials. On the part 1 task (impostor correct 
condition) the fused system reduced the EER from 2.63% to 
2.28% for male trials and from 7.01% to 3.48% for female 
trials. On the part4 task (impostor correct condition) the fused 
system helped to reduce the EER from 2.49% to 1.96% and 
from 5.9% to 3.22% for male and female trials respectively. 
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In target wrong and impostor wrong conditions the tandem 
and fused systems achieved EER below 1%. Based on above 
observations it can be concluded that tandem feature is very 

promising for speaker recognition with short duration 
utterances. 

Table 2. Speaker verification results on male trials of part 01 task of the RedDots corpus in terms of EER (%), DCF08, and 
DCF10 in three non target trials types.

EER (%)/DCF08/DCF10 
Task: Part 01 / Trials: Male  

Non-target type System IC TW IW 
MFCC 2.63/0.12/0.42 4.84/0.26/0.57 0.48/0.02/0.10 
LFCC 3.32/0.15/0.48 4.96/0.28/0.65 0.77/0.03/0.15 
WCC 11.7/0.5/0.99 12.0/0.7/0.99 4.28/0.2/0.9 

Tandem system  3.81/0.17/0.55 0.83/0.03/0.07 0.42/0.006/0.026 
Fused system 2.28/0.1/0.34 0.56/0.02/0.03 0.15/0.003/0.01 

Table 3. Speaker verification results on female trials of part 01 task of the RedDots corpus in terms of EER (%), DCF08, and 
DCF10 in three non target trials types. 

EER (%)/DCF08/DCF10 
Task: Part 01 / Trials: Female  

Non-target type System IC TW IW 
MFCC 7.01/0.28/0.39 7.10/0.29/0.52 2.32/0.09/0.23 
LFCC 6.12/0.23/0.5 6.16/0.31/0.63 2.42/0.08/0.22 
WCC 18.0/0.69/0.87 13.0/0.66/0.97 6.5/0.36/0.89 

Tandem 
system  5.32/0.25/0.46 0.47/0.019/0.019 0.23/0.012/0.06 

Fused system 3.48/0.19/0.34 0.38/0.01/0.01 0.41/0.009/0.02

Table 4. Speaker verification results on male trials of part 04 task (td) of the RedDots corpus in terms of EER (%), DCF08, 
and DCF10 in three non target trials types. 

EER (%)/DCF08/DCF10 
Task: Part 04 (td) / Trials: Male  

Non-target type System IC TW IW 
MFCC 2.49/0.11/0.39 5.6/0.3/0.7 0.49/0.02/0.13 
LFCC 3.2/0.14/0.45 5.97/0.37/0.79 0.72/0.03/0.20 
WCC 12.5/0.51/0.98 14.7/0.96/0.99 4.56/0.22/0.98 

Tandem system  2.95/0.14/0.49 0.81/0.03/0.15 0.25/0.004/0.02 
Fused system 1.96/0.09/0.28 0.54/0.02/0.10 0.15/0.003/0.01 

Table 5. Speaker verification results on female trials of part 04 (td) tasks of the RedDots corpus in terms of EER (%), 
DCF08, and DCF10 in three non target trials types. 

EER (%)/DCF08/DCF10 
Task: Part 04 (td) / Trials: Female  

Non-target type System IC TW IW 
1 MFCC 5.9/0.23/0.34 6.13/0.25/0.56 1.71/0.07/0.22 
2 LFCC 5.4/0.19/0.45 5.5/0.27/0.66 2.11/0.07/0.25 
3 WCC 17.12/0.67/0.89 13.9/0.69/0.97 6.2/0.32/0.93 
4 Tandem system  4.38/0.2/0.39 0.36/0.02/0.07 0.12/0.006/0.046 
5 Fused system 3.22/0.15/0.3 0.36/0.016/0.04 0.20/0.006/0.03 
6 Fused system (without WCC) 3.62/0.16/0.32 0.39/0.017/0.043 0.12/0.006/0.042 
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