
The IBM 2016 English Conversational Telephone Speech Recognition System

George Saon, Tom Sercu, Steven Rennie and Hong-Kwang J. Kuo

IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598
gsaon@us.ibm.com

Abstract
We describe a collection of acoustic and language model-

ing techniques that lowered the word error rate of our English
conversational telephone LVCSR system to a record 6.6% on
the Switchboard subset of the Hub5 2000 evaluation testset. On
the acoustic side, we use a score fusion of three strong models:
recurrent nets with maxout activations, very deep convolutional
nets with 3x3 kernels, and bidirectional long short-term mem-
ory nets which operate on FMLLR and i-vector features. On
the language modeling side, we use an updated model “M” and
hierarchical neural network LMs.
Index Terms: recurrent neural networks, convolutional neural
networks, conversational speech recognition

1. Introduction
The landscape of neural network acoustic modeling is rapidly
evolving. Spurred by the success of deep feed-forward neu-
ral nets for LVCSR in [1] and inspired by other research ar-
eas like image classification and natural language processing,
many speech groups have looked at more sophisticated archi-
tectures such as deep convolutional nets [2, 3], deep recurrent
nets [4], time-delay neural nets [5], and long-short term mem-
ory nets [6, 7, 8, 9]. The trend is to remove a lot of the com-
plexity and human knowledge that was necessary in the past
to build good ASR systems (e.g. speaker adaptation, phonetic
context modeling, discriminative feature processing, etc.) and
to replace them with a powerful neural network architecture
that can be trained agnostically on a lot of data. With the ad-
vent of numerous neural network toolkits which can implement
these sophisticated models out-of-the-box and powerful hard-
ware based on GPUs, the barrier of entry for building high per-
forming ASR systems has been lowered considerably. First case
in point: front-end processing has been simplified considerably
with the use of CNNs which treat the log-mel spectral represen-
tation as an image and don’t require extra processing steps such
as PLP cepstra, LDA, FMLLR, fMPE transforms, etc. Second
case in point: end-to-end ASR systems such as [6, 8, 7] bypass
the need of having phonetic context decision trees and HMMs
altogether and directly map the sequence of acoustic features to
a sequence of characters or context independent phones. Third
case in point: training algorithms such as connectionist tempo-
ral classification [10] don’t require an initial alignment of the
training data which is typically done with a GMM-based base-
line model.

The above points beg the question whether, in this age of
readily available NN toolkits, speech recognition expertise is
still necessary or whether one can simply point a neural net to
the audio and transcripts, let it train, and obtain a good acous-
tic model. While it is true that, as the amount of training data
increases, the need for human ASR expertise is lessened, at the
moment the performance of end-to-end systems ultimately re-

mains inferior to that of more traditional, i.e. HMM and deci-
sion tree-based, approaches. Since the goal of this work is to
obtain the lowest possible WER on the Switchboard dataset re-
gardless of other practical considerations such as speed and/or
simplicity, we have focused on the latter approaches.

The paper is organized as follows: in section 2 we discuss
acoustic and language modeling improvements and in section 3
we summarize our findings.

2. System improvements
In this section we describe three different acoustic models that
were trained on 2000 hours of English conversational telephone
speech: recurrent nets with maxout activations and annealed
dropout, very deep convolutional nets with 3×3 kernels, and
bidirectional long short-term memory nets operating on FM-
LLR and i-vector features. All models are used in a hybrid
HMM decoding scenario by subtracting the logarithm of the
HMM state priors from the log of the softmax output scores.

The training and test data, frontend processing, speaker
adaptation are identical to [11] and their description will be
omitted. At the end of the section, we also provide an update on
our vocabulary and language modeling experiments.

2.1. Recurrent nets with maxout activations

We remind the reader that maxout nets [12] generalize
ReLu units by employing non-linearities of the form si =
maxj∈C(i)

˘
wT

j x + bj

¯
where the subsets of neurons C(i)

are typically disjoint. In [11] we have shown that maxout
DNNs and CNNs trained with annealed dropout outperform
their sigmoid-based counterparts on both 300 hours and 2000
hours training regimes. What was missing there was a compar-
ison between maxout and sigmoid for unfolded RNNs [4]. The
architecture of the maxout RNNs comprises one recurrent layer
with 2828 units projected to 1414 units via non-overlapping
2 → 1 maxout operations. This layer is followed by 4 non-
recurrent layers with 2828 units (also projected to 1414) fol-
lowed by a bottleneck with 1024→512 units and an output
layer with 32000 neurons corresponding to as many context-
dependent HMM states. The number of neurons for the max-
out layers have been chosen such that the weight matrices have
roughly the same number of parameters as the baseline sigmoid
network which has 2048 units per hidden layer. The recurrent
layer is unfolded backwards in time for 6 time steps t − 5 . . . t
and has 340-dimensional inputs consisting of 6 spliced right
context 40-dimensional FMLLR frames (t . . . t + 5) to which
we append a 100-dimensional speaker-based ivector. The un-
folded maxout RNN architecture is depicted in Figure 1.

The network is trained one hidden layer at a time with dis-
criminative pretraining followed by 12 epochs of SGD CE train-
ing on randomized minibatches of 250 samples. The model is
refined with Hessian-free sequence discriminative training [13]

Copyright © 2016 ISCA

INTERSPEECH 2016

September 8–12, 2016, San Francisco, USA

http://dx.doi.org/10.21437/Interspeech.2016-14607

2828 1414

2828 1414

2828 1414

2828 1414

2828 1414

1024 512

...2828 1414

t−5 t

32000

Figure 1: Unfolded maxout RNN architecture (right arrows in
the boxes denote the maxout operation).

using the state-based MBR criterion for 10 iterations.

Model WER SWB WER CH

RNN sigmoid (CE) 10.8 16.9

RNN maxout (CE) 10.4 16.2

RNN maxout (ST) 9.3 15.4

Table 1: Word error rates for sigmoid vs. Maxout RNNs trained
with annealed dropout on Hub5’00 after cross-entropy training
(and sequence training for Maxout).

In Table 1 we report the error rates for sigmoid and maxout
RNNs on the Switchboard and CallHome subsets of Hub5’00.
The decodings are done with a small vocabulary of 30K words
and a small 4-gram language model with 4M n-grams. Note
that the sigmoid RNNs have better error rates than what was
reported in [11] because they have been retrained after the data
has been realigned with the best joint RNN/CNN model. We
observe that the maxout RNNs are consistently better and that,
by themselves, they achieve a similar WER as our previous best
model which was the joint RNN/CNN with sigmoid activations.

2.2. Very deep convolutional networks

Very deep Convolutional Neural Networks (CNNs) with small
3 × 3 kernels have recently been shown to achieve very strong
performance as acoustic models in hybrid NN-HMM speech
recognition systems [14, 15], with WER accuracy on Hub5’00
matching the performance of our previous best (RNN/CNN)
model [11].

The very deep convolutional networks are inspired by the
“VGG Net” architecture introduced in [16] for the 2014 Ima-
geNet classification challenge, with the central idea to replace
large convolutional kernels by small 3× 3 kernels. By stacking
many of these convolutional layers with ReLU nonlinearities
before pooling layers, the same receptive field is created with
less parameters and more nonlinearity.

Figure 2 shows the design of the networks. Note that as
we go deeper in the network, the time and frequency resolu-
tion is reduced through pooling only, while the convolutions are
zero-padded as to not reduce the size of the feature maps. We

increase the number of feature maps gradually from 64 to 512

(indicated by the different colors). We pool right before the
layer that increases the number of feature maps. Note that the
indication of feature map size on the right only applies to the
rightmost 2 designs. In contrast, the classical CNN architec-
ture has only two layers, goes to 512 feature maps directly, and
uses a large 9 × 9 kernel on the first layer. Our 10-layer CNN
has about the same number of parameters as the classical CNN,
converges in 5 times fewer epochs, but is computationally more
expensive. Here we will only report results for the deepest (10
convolutional layer) CNN which was shown to have optimal
performance in [14].

Results for 3 variations of the 10-layer CNN are in table 2.
For model combination, we use version (a) with pooling, which
is the exact same model without modifications from the original
paper [14].

CNN model SWB (300h) SWB (2000h)
CE ST CE ST

Classic sigmoid [17] 13.2 11.8 – –
Classic maxout [11] 12.6 11.2 11.7* 9.9*

(a) 10-conv Pool 11.8 10.5 10.2 9.4
(b) 10-conv No pool 11.5 10.9 10.7 9.7
(c) 10-conv No pool, no pad 11.9 10.8 10.8 9.7

Table 2: WER on the SWB part of the Hub5’00 testset, for
3 variants of the 10-convolutional-layer CNN: with pooling in
time (a), without pooling in time (b), and without pooling nor
padding in time (c). For more details on the trade-offs in the
three variants (a-c) see [15]. Since variant (a) with time pooling
and padding obtains the best results, this will be the only net-
work we provide further results for (see table 5). *New results.

Our implementation was done in Torch [18]. We adopt the
balanced sampling from [14], by sampling from context depen-

dent state CDi with probability pi =
f

γ
iP

j f
γ
j

. We keep γ = 0.8

throughout the experiments during cross-entropy training. Dur-
ing CE training, we optimize with simple SGD or NAG, during
ST we found NAG to be superior to SGD. We regularize the
stochastic sequence training by adding the gradient of cross-
entropy loss, as proposed in [19]. Please refer to [15] for further
training details.

2.3. Bidirectional LSTMs

Given the recent popularity of LSTMs for acoustic model-
ing [6, 7, 8, 9], we have experimented with such models on the
Switchboard task using the Torch toolkit [18]. We have looked
at the effect of the input features on LSTM performance, the
number of layers and whether start states for the recurrent lay-
ers should be reset or carried over. We use bidirectional LSTMs
that are trained on non-overlapping subsequences of 20 frames.
The subsequences coming from the same utterance are contigu-
ous so that the left-to-right final states for the current subse-
quence can be copied to the left-to-right start states for the next
subsequence (i.e. carried over). For processing speed and in or-
der to get good gradient estimates, we group subsequences from
multiple utterances into minibatches of size 256. Regardless of
the number of LSTM layers, all models use a linear bottleneck
of size 256 before the softmax output layer (of size 32000).

In one experiment, we compare the effect of input fea-
tures on model performance. The baseline models are trained

8

�������	
���

��������	�
�

��������	�
�

��������	���

��������	���

�������

��������	��

��������	��

�������

��������	��

������

��������	���

��������	���

�����

��������	���

������

������

������

������

��������������

�
�����

�������	
���

��������	�
�

��������	�
�

��������	���

��������	���

�������

��������	��

��������	��

�������

������

��������	���

��������	���

������

������

������

������

��������������

������

�������	
���

��������	�
�

��������	�
�

��������	���

��������	���

�������

��������	��

��������	��

������

�������

������

������

��������������

�����

�������	
����

��������	���

��������	���

������

������

������

��������������

����������������

��������

������

������������ !�
"���#���� ��$

������

�����

������

����

Figure 2: (1) Classical CNN. (2-4) The design of the very deep convolutional nets from [14] with 6, 8 and 10 convolutional layers
respectively. This figure corresponds to [14, table 1]. The rightmost, deepest CNN (10 convolutional layers) was found to obtain best
performance [14] and will be the only design we provide results for in this paper. Table 2 provides results for three variants of this
deepest CNN.

on 40-dimensional FMLLR + 100-dimensional ivector frames
and have 1024 (or 512) LSTM units per layer and per direction
(left-to-right and right-to-left). The forward and backward ac-
tivations from the previous LSTM layer are concatenated and
fed into the next LSTM layer. The contrast model is a sin-
gle layer bidirectional LSTM trained on 128-dim features ob-
tained by performing PCA on 512-dimensional bottleneck fea-
tures. The features are obtained from a 6-layer DNN cross en-
tropy trained on blocks of 11 consecutive FMLLR frames and
100-dimensional i-vectors. In Table 3, we report recognition re-
sults on Hub5’00 for these four models trained with 15 passes
of cross-entropy SGD on the 300 hour (SWB-1) subset.

Model WER SWB WER CH

1-layer 1024 bottleneck 11.8 19.3

2-layer 1024 FMLLR+ivec 11.1 19.2

3-layer 1024 FMLLR+ivec 11.0 18.5

4-layer 512 FMLLR+ivec 10.8 19.3

Table 3: Word error rates on Hub5 2000 for various LSTM mod-
els trained with cross-entropy on 300 hours.

Due to a bug that affected our earlier multi-layer LSTM
results, we decided to go ahead with single layer bidirectional
LSTMs on bottleneck features on the full 2000 hour training
set. We also experimented with how to deal with the start states
at the beginning of the left-to-right pass. One option is to carry
them over from the previous subsequence and the other one is
to reset the start states at the beginning of each subsequence.
In Figure 3 we compare the cross-entropy loss on held-out data
between these two models.

As can be seen, the LSTM model with carried over start

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 2 4 6 8 10 12 14 16

H
el

d-
ou

t l
os

s

Epoch

start states reset
start states carried over

Figure 3: Single layer LSTM cross-entropy loss on held-out
data with left-to-right start states which are either reset or car-
ried over.

states is much better at predicting the correct HMM state. How-
ever, when comparing word error rates in Table 4, the LSTM
with start states that are reset has a better performance. We
surmise that this is because the increased memory of the LSTM
with carried over start states is in conflict with the state sequence
constraints imposed by the HMM topology and the language
model. Additionally, we show the WERs of the DNN used for
the bottleneck features and of a 4-layer 512 unit LSTM. We ob-
serve that the 4 layer LSTM is significantly better than the DNN
and the two single layer LSTMs trained on bottleneck features.

9

Model WER SWB WER CH
CE ST CE ST

6-layer DNN 11.7 10.3 18.5 17.0

1-layer LSTM (carry-over) 10.9 – 18.3 –

1-layer LSTM (reset) 10.5 10.0 17.6 16.8

4-layer LSTM (reset) 9.5 9.0 15.7 15.1

Table 4: Word error rates on Hub5 2000 for DNN and LSTM
models. All models are trained on 2000 hours with cross-
entropy and sequence discriminative training.

2.4. Model combination

In Table 5 we report the performance of the individual models
(RNN, VGG and 4-layer LSTM) described in the previous sub-
sections as well as the results after frame-level score fusion. All
decodings are done with a 30K word vocabulary and a small
4-gram language model with 4M n-grams. We note that RNNs
and VGG nets exhibit similar performance and have a strong
complementarity which improves the WER by 0.6% and 0.9%
on SWB and CH, respectively.

Model WER SWB WER CH

RNN maxout 9.3 15.4

VGG (a) from Table 2 9.4 15.7

LSTM (4-layer, 512) 9.0 15.1

RNN+VGG 8.7 14.5

VGG+LSTM 8.6 14.6

LSTM+RNN 8.9 14.5

RNN+VGG+LSTM 8.6 14.4

Table 5: Word error rates for individual acoustic models and
frame-level score fusions on Hub5 2000.

2.5. Language modeling experiments

Our language modeling strategy largely parallels that described
in [11]. For completeness, we will repeat some of the details
here. The main difference is an increase in the vocabulary size
from 30K words to 85K words.

When comparing acoustic models in previous sections, we
used a relatively small legacy language model used in previous
publications: a 4M n-gram (n=4) language model with a vo-
cabulary of 30.5K words. We wanted to increase the language
model coverage in a manner that others can replicate. To this
end, we increased the vocabulary size from 30.5K words to 85K
words by adding the vocabulary of the publicly available Broad-
cast News task. We also added to the LM publicly available
text data from LDC, including Switchboard, Fisher, Gigaword,
and Broadcast News and Conversations. The most relevant data
are the transcripts of the 1975 hour audio data used to train the
acoustic model, consisting of about 24M words.

For each corpus we trained a 4-gram model with modified
Kneser-Ney smoothing [20]. The component LMs are linearly
interpolated with weights chosen to optimize perplexity on a
held-out set. Entropy pruning [21] was applied, resulting in a
single 4-gram LM consisting of 36M n-grams. This new n-gram
LM was used together with our best acoustic model to decode
and generate word lattices for LM rescoring experiments. The
first two lines of Table 6 show the improvement using this larger
n-gram LM with larger vocabulary trained on more data. The

WER improved by 1.0% for SWB. Part of this improvement
(0.1-0.2%) was due to also using a larger beam for decoding
and a change in vocabulary tokenization.

LM WER SWB WER CH

30K vocab, 4M n-grams 8.6 14.4

85K vocab, 36M n-grams 7.6 13.7

n-gram + model M 7.0 12.6

n-gram + NNLM 6.8 12.4

n-gram + model M + NNLM 6.6 12.2

Table 6: Comparison of word error rates for different LMs.

We used two types of LMs for LM rescoring: model M,
a class-based exponential model [22] and feed-forward neural
network LM (NNLM) [23, 24, 25, 26]. We built a model M LM
on each corpus and interpolated the models, together with the
36M n-gram LM. As shown in Table 6, using model M results
in an improvement of 0.6% on SWB.

We built two NNLMs for interpolation. One was trained
on just the most relevant data: the 24M word corpus (Switch-
board/Fisher/CallHome acoustic transcripts). Another was
trained on a 560M word subset of the LM training data: in
order to speed up training for this larger set, we employed a
hierarchical NNLM approximation [24, 27]. Table 6 shows that
the NNLMs provided an additional 0.4% improvement over the
model M result on SWB. Compared with the n-gram LM base-
line, LM rescoring yielded a total improvement of 1.0% on
SWB (7.6% to 6.6%) and 1.5% on CH (13.7% to 12.2%).

3. Conclusion
In our previous Switchboard system paper [11] we have ob-
served a good complementarity between recurrent nets and con-
volutional nets and their combination led to significant accu-
racy gains. In this paper we have presented an improved un-
folded RNN (with maxout instead of sigmoid activations) and
a stronger CNN obtained by adding more convolutional layers
with smaller kernels and ReLu nonlinearities. These improved
models still have good complementarity and their frame-level
score combination in conjunction with a multi-layer LSTM
leads to a 0.4%-0.7% decrease in WER over the LSTM. Multi-
layer LSTMs were the strongest performing model followed
closely by the RNN and very deep convolutional nets. We also
believe that LSTMs have more potential for direct sequence-to-
sequence modeling and we are actively exploring this area of
research. On the language modeling side, we have increased
our vocabulary from 30K to 85K words and updated our com-
ponent LMs.

At the moment, we are less than 3% away from achieving
human performance on the Switchboard data (estimated to be
around 4%). Unfortunately, it looks like future improvements
on this task will be considerably harder to get and will probably
require a breakthrough in direct sequence-to-sequence model-
ing and a significant increase in training data.

4. Acknowledgment
The authors wish to thank E. Marcheret, J. Cui and M.
Nussbaum-Thom for useful suggestions about LSTMs.

10

5. References
[1] F. Seide, G. Li, X. Chien, and D. Yu, “Feature engineering

in context-dependent deep neural networks for conversa-
tional speech transcription,” in Proc. ASRU, 2011.

[2] O. Abdel-Hamid, L. Deng, and D. Yu, “Exploring convo-
lutional neural network structures and optimization tech-
niques for speech recognition.” in INTERSPEECH, 2013,
pp. 3366–3370.

[3] T. N. Sainath, A.-r. Mohamed, B. Kingsbury, and B. Ram-
abhadran, “Deep convolutional neural networks for lvcsr,”
in Acoustics, Speech and Signal Processing (ICASSP),
2013 IEEE International Conference on. IEEE, 2013,
pp. 8614–8618.

[4] G. Saon, H. Soltau, A. Emami, and M. Picheny, “Unfolded
recurrent neural networks for speech recognition,” in Fif-
teenth Annual Conference of the International Speech
Communication Association, 2014.

[5] V. Peddinti, D. Povey, and S. Khudanpur, “A time delay
neural network architecture for efficient modeling of long
temporal contexts,” in Proceedings of INTERSPEECH,
2015.

[6] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos,
E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates
et al., “Deepspeech: Scaling up end-to-end speech recog-
nition,” arXiv preprint arXiv:1412.5567, 2014.

[7] H. Sak, A. Senior, K. Rao, O. Irsoy, A. Graves, F. Beau-
fays, and J. Schalkwyk, “Learning acoustic frame labeling
for speech recognition with recurrent neural networks,” in
Acoustics, Speech and Signal Processing (ICASSP), 2015
IEEE International Conference on. IEEE, 2015, pp.
4280–4284.

[8] Y. Miao, M. Gowayyed, and F. Metze, “Eesen: End-to-end
speech recognition using deep rnn models and wfst-based
decoding,” arXiv preprint arXiv:1507.08240, 2015.

[9] A.-r. Mohamed, F. Seide, D. Yu, J. Droppo, A. Stol-
cke, G. Zweig, and G. Penn, “Deep bi-directional re-
current networks over spectral windows,” in Automatic
Speech Recognition and Understanding (ASRU), 2015
IEEE Workshop on. IEEE, 2015.

[10] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recog-
nition with deep recurrent neural networks,” in Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE In-
ternational Conference on. IEEE, 2013, pp. 6645–6649.

[11] G. Saon, H.-K. Kuo, S. Rennie, and M. Picheny, “The
IBM 2015 English conversational speech recognition sys-
tem,” in Sixteenth Annual Conference of the International
Speech Communication Association, 2015.

[12] I. J. Goodfellow, D. Warde-Farley, M. Mirza,
A. Courville, and Y. Bengio, “Maxout networks,”
arXiv preprint arXiv:1302.4389, 2013.

[13] B. Kingsbury, T. Sainath, and H. Soltau, “Scalable min-
imum Bayes risk training of deep neural network acous-
tic models using distributed Hessian-free optimization,” in
Proc. Interspeech, 2012.

[14] T. Sercu, C. Puhrsch, B. Kingsbury, and Y. LeCun,
“Very deep multilingual convolutional neural networks for
lvcsr,” Proc. ICASSP, 2016.

[15] T. Sercu and V. Goel, “Advances in very deep convolu-
tional neural networks for lvcsr,” arXiv, 2016.

[16] K. Simonyan and A. Zisserman, “Very deep convolu-
tional networks for large-scale image recognition,” CoRR
arXiv:1409.1556, 2014.

[17] H. Soltau, G. Saon, and T. N. Sainath, “Joint training of
convolutional and non-convolutional neural networks,” to
Proc. ICASSP, 2014.

[18] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7:
A matlab-like environment for machine learning,” in
BigLearn, NIPS Workshop, no. EPFL-CONF-192376,
2011.

[19] H. Su, G. Li, D. Yu, and F. Seide, “Error back propagation
for sequence training of context-dependent deep networks
for conversational speech transcription,” Proc. ICASSP,
2013.

[20] S. F. Chen and J. Goodman, “An empirical study of
smoothing techniques for language modeling,” Computer
Speech & Language, vol. 13, no. 4, pp. 359–393, 1999.

[21] A. Stolcke, “Entropy-based pruning of backoff language
models,” in Proc. DARPA Broadcast News Transcription
and Understanding Workshop, 1998, pp. 270–274.

[22] S. F. Chen, “Shrinking exponential language models,” in
Proc. NAACL-HLT, 2009, pp. 468–476.

[23] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A
neural probabilistic language model,” Journal of Machine
Learning Research, vol. 3, pp. 1137–1155, 2003.

[24] A. Emami, “A neural syntactic language model,” Ph.D.
dissertation, Johns Hopkins University, Baltimore, MD,
USA, 2006.

[25] H. Schwenk, “Continuous space language models,” Com-
puter Speech & Language, vol. 21, no. 3, pp. 492–518,
2007.

[26] A. Emami and L. Mangu, “Empirical study of neural net-
work language models for Arabic speech recognition,” in
Proc. ASRU, 2007, pp. 147–152.

[27] H.-K. J. Kuo, E. Arısoy, A. Emami, and P. Vozila, “Large
scale hierarchical neural network language models,” in
Proc. Interspeech, 2012.

11

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index

	Abstract Book
	Abstract Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by George Saon
	Also by Tom Sercu
