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Abstract

State-of-the-art automatic speech recognition (ASR) systems
typically rely on pre-processed features. This paper studies
the time-frequency duality in ASR feature extraction methods
and proposes extending the standard acoustic model with a
complex-valued linear projection layer to learn and optimize
features that minimize standard cost functions such as cross-
entropy. The proposed Complex Linear Projection (CLP) fea-
tures achieve superior performance compared to pre-processed
Log Mel features.

Index Terms: feature extraction, complex neural network,
speech recognition

1. Introduction

The most common ASR feature extraction method applies an
auditory-inspired Mel filter bank to the squared magnitude of
the short-time Fourier transform of the speech window [1].
The filter parameters are set based on knowledge about human
speech perception. The filter bank outputs, commonly referred
to as Mel features, are then used to train an acoustic model
(AM). This separation of perceptually motivated filters from
the AM, is not always the best choice in statistical modeling
frameworks such as ASR, where the end goal is word error rate
minimization. This motivates the essence of data driven learn-
ing schemes for joint learning of filter bank parameters and the
acoustic model.

There have been numerous efforts in the ASR commu-
nity looking at data-driven filter bank design. Statistical tools
such as Independent Component Analysis [2, 3, 4], Linear Dis-
criminant Analysis (LDA) [5] were explored to design filter
bank which extract higher order statistical characteristics of the
speech signal. Joint optimization of the filter bank parameters
and classification error were investigated in [6] which led to su-
perior results over the baseline Log Mel features. While these
statistical methods have shown some improvement in small
ASR tasks, most of these methods were explored within shallow
acoustic model architectures such as AMs based on Gaussian
Mixture Models (GMMs).

The emergence of deep neural networks for acoustic mod-
eling [7] has recently sparked a resurgence in data-driven tech-
niques which jointly estimate filter bank and AM parameters
[8,9, 10, 11, 12, 13, 14, 15]. In these models, the first layers
of AM network is designed to learn filter bank directly from
raw waveform. The architecture typically consist of a convo-
Iution layer followed by a pooling layer. The success of the
resulting model highly depends on the choice of convolutional
and pooling layer parameters. While most of these techniques
still lag behind Log Mel trained AMs, recently proposed Raw
waveform model has shown promising results for both single
and multi-channel systems [14, 16, 17].
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This paper introduces a technique which performs both fil-
tering and pooling in the frequency domain, avoiding the com-
plexity of convolution in the time domain and the extra param-
eter tuning required for convolutional layers. We propose to
process frequency-domain features with a complex linear pro-
jection (CLP) layer. This layer does both filtering and pooling
in one operation, and produces set of ASR features which can be
fed to the backend neural network AM. For single channel and
multi-channel settings, the model obtained via joint training of
CLP and AM achieves superior performance compared to both
Log Mel and Raw waveform model using Convolutional Neu-
ral Networks (CNNs). In addition, it is computationally more
efficient than CNN based models.

2. Time Frequency Duality in ASR Feature
Extraction

The ultimate goal of a feature extraction method in ASR is to
represent a window of speech samples with a feature vector
that encodes the maximum information about the signal. Time
domain feature extraction involves convolution followed by a
pooling process. Each filter is convolved with the input signal to
extract a revertible representation of the signal. Pooling is then
applied to each filter response to further compress and remove
the redundant information and also to induce invariance against
small noises in the input signal. To avoid the complexity of the
convolution operation, the above process can be implemented
in the frequency domain using duality theorem.

Depending on the complexity of the analytical expression
for the filters and the pooling operation, feature extraction meth-
ods are preferred to be implemented in either time or frequency
domain. The Mel features are derived by element-wise mul-
tiplication of the magnitude spectrum with positive Mel filter
weights followed by £22 pooling [1]. Gammatone features are
computed by convolution of the time signal with Gammatone
filters followed by an average pooling [18].

Previous efforts on joint learning of ASR filter bank and
AM are in time domain, typically using CNNs [14]. The m
point filter h; is convolved with a segment of speech signal x
containing n samples. The filter support size m is determined
through extensive experimentation. Because of the duality theo-
rem between time and frequency domain, the frequency domain
equivalence of the circular convolution is X ® H; where X and
H, are the Fourier transforms of x and h;, respectively, and ®
is the element-wise multiplication. Here, H; has the same FFT
size as X and can be learned as a neural network layer without
any constraint on its time domain equivalent support size.

The m + n — 1 dimensional output of the convolution is
projected to a single scalar through a pooling function f, :
R™*t7~1 _, R. In CNN literature, the deterministic functions
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such as max [19], average [20], or ¢, [21] as well as learn-
able pooling functions using a small multi-layer perceptron [22]
are used to aggregate the multi-dimensional convolution output
into a scalar. In a few cases there is a clear duality between
time and frequency domain pooling operations. For example,
the £22 pooling in the time domain is equivalent to £22 pool-
ing in the frequency domain due to Parseval’s theorem [23],
£2% (2) = £2* (Z (x)). For pooling operations such as max
or {2 norm, the Fourier transform derivation is not straight
forward. Instead this paper proposes to use summation in the
frequency domain for pooling. This simple operation has the
advantage that the final model can be expressed as a projection
of X into a lower dimensional space, through a simple matrix
vector multiplication which can intuitively explain the ultimate
goal of feature extraction, projection.

3. Complex Linear Projection Model

We propose Complex Linear Projection (CLP) feature extrac-
tion for ASR:

e L x Wy —wx Wy )
W is a complex matrix in CP* (N+1) \where p is the projection
size which can also be interpreted as number of filters. N is
half of the FFT size of .% (x). Since x is a real valued signal,
the projection matrix W is only applied to the first half of FFT
vectori.e. X € CV*!. For ease of notations, we will notate this
complex vector as X = Xgr + jX and the projection matrix
with W = Wgr + jW7 where the real and imaginary parts are
the real valued matrices of same dimension as W. Since the
rest of network is real, we take element-wise norm of vector Y
followed by a logarithmic compression and pass it to the rest of
network.

The complex linear layer is embedded as the first layer
of the neural network AM. The complex weights are jointly
learned with the rest of the network parameters using the ASR
optimization cost. While the above process involves a com-
plex matrix-vector multiplication, to ensure that all the values
and gradients are in the real domain, the complex layer is im-
plemented by four linear matrix vector multiplications. Since
norm of Y = WX is passed to the next layers, we can directly
compute |Y| in the real domain:

Y| = [R{YP+S{v}]"”
R{Y} = WrXg—-WiX;
S{Y} = WrX;+WiXg )

3.1. CLP Filter bank

The filter bank parameters of the complex projection model are
jointly learnt with the AM network. The AM is a Long Short
Term Memory (LSTM) model and shared CLP layer is inte-
grated into time steps of the first LSTM layer. Figure 1 presents
the logarithm of the magnitude weights of the CLP projection
matrix for single channel and multi-channel setting. Each col-
umn corresponds to a row of the complex matrix . The filter
bank converges to set of narrow-band bandpass filters which
nonuniformly spaced across frequency. Due to the sparse na-
ture of filters in the frequency domain we use L1 regularization
to assist training, Figure 1-b. Same effect can be obtained by
constraining the weight matrix to only learn a frequency range
around Bark scale Figure 1-c. Our experiments show that this
model achieves similar performance as L1 regularized model
with fewer number of parameters. Finally Figure 1-d shows
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Figure 1: The trained CLP filters on english task. (a,b,c) are
single channel (d) 2-channel. The columns are sorted based on
the center frequency.

the learned filters for 2-channel setting. Without applying any
signal processing beamforming technique, the model is able to
learn best combination rule from the channels FFT vectors.

3.2. Comparison with Mel

The following presents the main steps toward extraction of the
Mel features on spectrum energy:

2

e 2y x M x2 Ml y - avx)? 3)
where M is the Mel filter bank matrix for which all the elements
are positive. The it" element of Mel feature vector is YiMel =
>, (Mo |X|)j2 where M’ is a matrix which each element is
simply square root of the corresponding element in M, M';; =
M, 05,

The output of the " filter in CLP model is ¥;°*¥ =
>_; (Wi ® X);. The CLP model is different from Mel in terms

of their pooling operation; Mel uses £22 pooling while CLP uses
a simple summation pooling. The Mel filter bank operates on
| X| features while the CLP model operates on X = | X |e?9%
This means that the phase information in X is removed in the
Mel model while it is preserved in CLP model. In speech
recognition, there is a long-standing debate about the impor-
tance of phase for single microphone recognition. However,
it is generally agreed that phase information is necessary for
multi-channel processing. The phase information preserves rel-
ative delay of the speech signal at each microphone which is the
main component of many enhancement techniques [24, 25, 16].

3.3. Time Domain Equivalent

Lemma 1. Summation in the frequency domain is equivalent to
weighted average pooling in the time domain. More precisely,
if X is the Fourier transform of the 2N point signal x, then

N 2N-1
k=0 n=0
where,
N+1 n=0
an = { coth (j3%) mod (n,2) = Q)
1 mod (n,2) =0, n#0
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Proof. This can easily be proved using the geometric sum:

N N 2N-1 ok
kZ:OXk = Z Z z[n] exp <7jﬁn>

= 2§1 z[n] <2N: exp (—Ji\?k)>
n=0 k=0

— (N+1)zlo]

) 2§1m[n] <exp (—j% (N+1)) — 1>

exp (—j5) — 1

n=1
2N—-1

= Z anx[n]. 6)
n=0

O

Proposition 1. The projection in the frequency domain is equiv-
alent to convolution followed by a weighted average pooling:

2N—-1

> oy (wix ) [f]
§=0

The i*" element of the CLP model is:

N

> WisX;

=0

> WieXx

2N—-1
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N
=0

CLP
3/'7; =

®
which is derived by of Lemma 1 and duality theorem.

4. Experiments

The Complex Linear Projection model is a frequency domain
feature extraction method which can be jointly optimized with
the acoustic model. To establish the effectiveness of this
method, the experiments are designed to evaluate CLP in three
aspects, (1) effectiveness of CLP model to achieve state-of-the-
art performance using Log Mel and Raw Waveform model, (2)
benefits of learning in frequency over time, and (3) benefits of
joint training of features and AM over the separate feature ex-
traction process like Log Mel.

Datasets. Two anonymized datasets were used: Multi-
channel American English (en_us), consisting of 2000 hours
of spontaneous speech from anonymized, human transcribed
Voice Search data. This is denoted as clean dataset. The noisy
set is created by artificially corrupting clean utterances using
a room simulator, adding varying degrees of noise and rever-
beration. The simulation uses an §-channel linear microphone
array, with inter-microphone spacing of 2 cm were both noise
and target speaker locations are changing between utterances.
Channel one is used for single channel experiments, while ex-
periments on 2-channel speech use channels 1 and 8, which are
separated by 14cm. More details can be found in [16]. Tai-
wanese Mandarin (cmn_hant_tw) consisting of more than 30000
utterances, hand transcribed and anonymized. The test sets for
each language are separately anonymized, human-transcribed
Voice Search data of about 25 hours each. The noisy evaluation
set includes simulated speech, synthesized similarly to the train
set.
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Models. The backend AM model, LDNN, is 3 LSTM lay-
ers followed by a Rectified Linear Unit (ReLu) layer and a Lin-
ear layer [16]. Each LSTM consist of 832 cells with 512 di-
mensional projection layer. The fully connected ReLu layer has
1024 nodes which is followed by a linear layer of 512 nodes and
a softmax layer. The en_us and cmn_hant_tw models use 13522
and 10538 context-dependent state output targets, respectively.
The Log Mel model consist of a LDNN model trained on sep-
arately extracted Log Mel features. The feature dimension per
frame into LDNN is 128 for single channel and 256 for two
channel experiment. The Raw Waveform model jointly train
a feature extraction module and the LDNN model. The fea-
ture extraction module consists of a convolution, ReLLu and max
pooling layer plus logarithmic compression. The Raw model
parameters are set as in [14]. The parameters are set such that
feature extraction module extract 128 and 256 dimensional fea-
ture for single channel and two channel experiments, respec-
tively. For two channel model, the 256 dimensional features
extracted per channel are added so that same feature dimension
as Log Mel model goes to time steps of the first LSTM layer.
The CLP model also replace the separateley processed Log Mel
features by a feature extraction module which is jointly trained
with backend LDNN model. The feature extraction module fol-
low the steps in Eq 1 followed by a logarithmic compression.
Unlike the Raw model, the baseline CLP model has similar lin-
ear complexity as Log Mel model. All models trained with
cross-entropy (CE) loss using ASGD training with 200 multi-
core machines [26].

Baseline. Table 1 presents the baseline WERs for Log Mel
and Raw waveform models across three different window sizes.
Typically a window size of 25 msec with a 10 msec shift is used
in ASR, which requires zero padding to perform the FFT. To
avoid zero padding, a window size of 32 msec is also consid-
ered. In addition, for empirical investigation of longer window
effects, Table 1 contains the WER results for 64 msec window.
Longer window contains more temporal information as well as
localization for multi-channel processing which result in WER
improvement over shorter windows.

MODEL 1-CHANNEL 2-CHANNEL
LoG MEL | Raw | LoG MEL | RAW
25 MSEC 23.4 23.7 21.8 21.5
32 MSEC 22.8 23.4 21.3 21.2
64 MSEC 21.8 22.5 20.7 21.2

Table 1: WER for the baseline models on en_us dataset.

Baseline CLP. For the baseline CLP model, the frequency
range between 125 Hz to 7500 Hz were kept, similar to the Log
Mel model. Since the pre-emphasis filter used during FFT com-
putation can harm the phase information, it is removed for the
CLP models. The pre-emphasis was helping Log Mel perfor-
mance, so it is kept for Log Mel models. To enforce sparsity,
L1 regularization was used for learning the CLP component
weights. Similar performance was achieved by constraining the
frequency ranges covered by each filter, Figure 1-c. The base-
line CLP model results are shown in Table 2. The CLP model
performance is in par with the Log Mel model for single chan-
nel and yields a gain of about 4% over the 2-channel baseline
models in Table 1.

Learning in Frequency versus Time. We argue learning
in the frequency domain is more efficient compare to the time
domain in three aspects, parameter tuning, computation effi-
ciency, and optimization. The efficiency of the Raw waveform
model is devoted to the proper choice of the convolution filter



MODEL 1-CHANNEL | 2-CHANNEL
25 MSEC 23.2 21.5
32 MSEC 22.8 20.9
64 MSEC 22.0 20.5

Table 2: WER for CLP baseline models on en_us dataset.

size as well as pooling size. As Table 3 shows, to capture long
temporal dependencies of speech, the best WER achieved using
filter support size of 352 samples. However this leads to signif-
icant computation bottleneck during training and run time. The
time implementation of p filters in the time domain with filter
support size of d and stride of one for a 2V point signal and
full convolution requires 2pd x (2N + d + 1) operations. Sim-
ilar operation can be done by 16p/N operations in the frequency
domain. Hence, there is a factor of kernel size difference be-
tween run-time of the same operation in the time and frequency
domains. Table 4, compares the total number of parameters as

112
25.8

192
23.8

272
23.4

352
23.4

432
23.5

SUPPORT SIZE
WER

Table 3: WER for different convolution filter size in Raw model.

well as Add and Multiplications for the CLP and Raw model.
The CLP model brings 55-fold reduction in add and multiplica-
tion operations.

MODEL Raw CLP
NUM-PARAMS 45K 66K
NUM-ADD-MULT | 14.51 M | 263.17 K

Table 4: Computation efficiency comparison.

Defining the speech recognition filters in the frequency do-
main is appealing partly because acoustic filters are known to be
narrow-band in the frequency domain [27, 28, 29] . This trans-
late to very small non-zero support in the frequency domain.
However, based on the Gabor limit [30], the dual of band lim-
ited frequency filters are wide band in the time domain and vice
versa. So, the time representation is expected to have more non-
zero entries. In other words, the frequency representation of the
speech filters tend to be sparser in the frequency domain com-
pared to the raw domain. The tendency of filters to be sparser in
frequency representation greatly facilitates optimization [31].

Joint versus Separate Feature Extraction. While joint
training of feature extraction module and AM network outper-
forms the separate model for multi-channel setting, the bene-
fits of joint model is not clear for single channel task, Table 2
and Table 1. We argue that joint training is still beneficial for
two reasons. First, it removes the extensive feature engineer-
ing in domain specific problems. For tonal languages like Tai-

MODEL
CMN_HANT_TW

LOGMEL
17.2

RAW
16.8

CLP
16.6

Table 5: Joint vs. Separate: Language dependecy.

wanese Mandarin, the usual practise in ASR is feature engi-
neering by appending tonal features such as pitch to the Log
Mel features. There is always a question of what is the best
pitch extraction method and how to configure its parameters.
As Table 5 shows, both joint models offer around 12% relative
improvement over Log Mel baseline in single channel setting.
Furthermore, Figure 2 shows how the CLP center frequencies
are different for cmn_hant_tw versus en_us. It also compares the
center frequency curves for noisy and clean en_us set.
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Figure 2: The center frequencies vs. filter index.

In addition, the joint models provide the possibility of in-
vestigating alternative feature extraction models such as high
dimensional features. Table 6 shows how increasing number of
filters can benefit the CLP model. These models obtain an ad-
ditional 2-4% relative improvement over separate Log Mel and
Raw models in Table 1. Increasing filter bank size is not possi-
ble for the Log Mel model with the same size FFT since there
is a possibility to have one or no FFT tap per filter. On the other
hand, increasing number of filters for Raw model is not feasible
due to the computational cost and additional parameter tuning.

MODEL 1-CHANNEL 2-CHANNEL
P=128 | P=1280 | P =256 | P = 2560

32 MSEC 22.8 22.2 20.9 20.2

64 MSEC 22.0 21.6 20.5 19.7

Table 6: WER of CLP when increasing number of filters.
5. Conclusions

This paper casted feature extraction mechanism as a problem of
learning a cascade of two stages, filtering followed by a pool-
ing stage and identified these stages in the conventional Log
Mel model and the recently proposed CNN based raw wave-
form models. A feature learning mechanism in the frequency
domain was introduced consist of a complex-valued linear layer
pre-pended to the acoustic model which embodying both filter-
ing and pooling compactly and efficiently in the frequency do-
main. All the parameters of the resulting deep neural network
architecture were then jointly optimized using cross-entropy
cost function to learn features which are most suited for the
recognition task. This joint optimization provides the capabil-
ity of learning optimal features for different flavors of speech
recognizers, e.g. as used for tonal language such as Taiwanese
Mandarin. In addition, the properties of the complex-valued lin-
ear projection layer as an alternative of the convolutional neural
networks were explored. It was shown that the complex-valued
linear layer is computationally efficient compared to the CNN
based time domain version. Furthermore, this model does not
discard any information in the signal, including the time de-
lay or phase information from multiple channels in a micro-
phone array which makes it appropriate to automatically learn
the optimal feature extraction parameters in the multi-channel
setting without any signal processing based beamforming ap-
proach. Finally, the empirical comparisons Demonstrated the
effectiveness of the proposed model to achieve state-of-the-art
performance.
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