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Abstract
We introduce a blind source separation algorithm named GCC-
NMF that combines unsupervised dictionary learning via non-
negative matrix factorization (NMF) with spatial localization
via the generalized cross correlation (GCC) method. Dictio-
nary learning is performed on the mixture signal, with separa-
tion subsequently achieved by grouping dictionary atoms, over
time, according to their spatial origins. Separation quality is
evaluated using publicly available data from the SiSEC sig-
nal separation evaluation campaign consisting of stereo record-
ings of 3 and 4 concurrent speakers in reverberant environ-
ments. Performance is quantified using perceptual and SNR-
based measures with the PEASS and BSS Eval toolkits, re-
spectively. We compare our approach with other NMF-based
speech separation algorithms including unsupervised and semi-
supervised approaches. GCC-NMF outperforms the unsuper-
vised model-based approach that combines NMF with spatial
covariance mixture models, and compares favourably to semi-
supervised approaches that leverage prior knowledge and infor-
mation, despite being purely unsupervised itself.
Index Terms: cocktail party problem, blind speech separation,
interaural time difference, NMF, GCC, PHAT, CASA

1. NMF and Blind Speech Separation
1.1. The Cocktail Party Problem

The cocktail party problem [1, 2] is a classic blind source sep-
aration problem that involves separating mixtures of concurrent
speech signals in real-world environments. Improving separa-
tion algorithms, resulting in greater suppression of interference
and fewer artifacts, will impact the quality and robustness of
assistive listening devices including hearing aids and cochlear
implants, as well as the performance of speech recognition sys-
tems increasingly pervasive in recent years. Major challenges
of the blind speech separation problem stem from underdeter-
mined mixing systems, reverberant environments, the presence
of noise, and the non-stationarity of speech. However, with
the advent of powerful machine learning algorithms including
non-negative matrix factorization (NMF) [3, 4], in addition to
increasing computational power, significant progress is being
made [5, 6].

1.2. NMF and Speech Separation

NMF is an unsupervised dictionary learning algorithm that lies
at the heart of a wide variety of sound separation techniques
ranging from blind to weakly and strongly guided approaches
[7, 8]. Well-suited to the compositional nature of sound mix-
tures, NMF yields non-destructive, parts-based representations
of mixture spectrograms. However, when applied to mixtures of
complex sounds including speech, sources are encoded across
multiple dictionary atoms, requiring subsequent grouping of

atoms to achieve separation. While many solutions to this
problem involve some form of supervision, unsupervised ap-
proaches, including that presented in this paper, have also been
proposed.

Supervised solutions to the over-segmentation problem
leverage prior knowledge or information. For simple sounds,
dictionary elements may be grouped by hand via inspection
[9], however this approach quickly becomes cumbersome as
the source complexity or number of sources increases. A more
common supervised approach is to use isolated source record-
ings to adapt source-specific dictionaries, and subsequently
concatenate the dictionaries to encode mixture signals [10]. The
encoding process then achieves separation, as each source is
encoded by its corresponding dictionary. Another approach in-
volves using prior knowledge of the kinds of sources present in
the mixture signal to constrain parts of the NMF dictionary such
that they correspond to the sources of interest [11].

Unsupervised solutions typically make use of spatially dis-
tributed microphones, combining NMF with spatial information
to achieve separation. A common model-based approach is to
learn a set of source-specific dictionaries, adapting a set of cor-
responding mixing models in parallel. Mixing models may take
the form of spatial covariance matrices [12], while the dictio-
naries may be made more complex with a multi-layer struc-
ture [11]. However, the spatial covariance matrix approaches
are sensitive to initialization, and require constrained dictionar-
ies in practice for good results [11, 13]. Another unsupervised
approach is to combine NMF with traditional beamforming al-
gorithms [14, 15], however these approaches are developed for
large microphone arrays as opposed to the two-channel case we
consider here.

1.3. Proposed Approach: GCC-NMF

In this work, we propose a new approach to combining spatial
information with NMF, providing a means to group dictionary
atoms based on their spatial origin in an unsupervised fashion.
By combining the Generalized Cross Correlation (GCC) source
localization method with an NMF dictionary learned on a mix-
ture signal, individual dictionary atoms are localized over time,
and grouped according to their spatial origin. We begin with
a presentation of NMF and GCC in Section 2, followed by a
development of the GCC-NMF source separation algorithm in
Section 3. Experimental analysis of the effects of NMF param-
eters on separation performance as well as a comparison with
other unsupervised and semi-supervised approaches is then pre-
sented in Section 4, followed by a conclusion in Section 5.

2. Foundations: NMF and GCC
In this section, we present the foundations of the GCC-NMF
separation algorithm, namely the NMF dictionary learning al-
gorithm and the GCC method of source localization.
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2.1. NMF

Input to the NMF algorithm consists of a magnitude time-
frequency representation of the mixture signal, represented
mathematically as a non-negative matrix Vft with f and t in-
dexing frequency and time respectively. NMF decomposes this
spectrogram into two non-negative matrices: a dictionary ma-
trix Wfd and a coefficient matrix Hdt, such that their product
Λ = WH approximates V. The d columns of W are referred to
as dictionary atoms: non-negative functions of frequency that
are combined linearly with the corresponding coefficients at
each point in time to reconstruct the corresponding column of
the input spectrogram.
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Figure 1: Dictionary learned by NMF on a mixture of speech
signals: atoms are non-negative functions of frequency.

The NMF learning algorithm optimizes a cost function that
includes a reconstruction error term and an optional coefficient
sparsity inducing term. Various measures of reconstruction er-
ror have been used, several of which generalize to the β diver-
gence Dβ(V|Λ) including the Euclidian distance and general-
ized Kullback-Leibler divergence [16]. An l1 norm is typically
used for coefficient sparsity [17]. Multiplicative update rules
are then defined such that by initializing W and H randomly
and updating them iteratively, the algorithm converges to a local
minimum of the cost function. The update rules for Dβ(V|Λ)
with l0 sparsity are defined as,

H← H�
W>

(
V � Λβ−2

)
W>Λβ−1 + α

(1)

W←W �
(
Λβ−2 �V

)
H>

Λβ−1H>
(2)

where � is the Hadamard (element-wise) product, matrix ex-
ponentials are elementwise, and α weights coefficient sparsity
against reconstruction error. To remove the scaling indetermi-
nacy between W and H, the dictionary atoms are typically nor-
malized after each update, and their coefficients adjusted ac-
cordingly.

In the case of stereo audio signals we study here, the left
and right input spectrograms may be concatenated in time prior
to learning, i.e. Vft = [Vlft|Vrft], where the resulting coef-
ficients are correspondingly Hdt = [Hldt|Hrdt], and the dictio-
nary remains as above.

2.2. GCC

Time differences of arrival (TDOA) of signals between pairs of
spatially distributed sensors are used in a variety of sensor array

applications for beamforming and localization. The General-
ized Cross-Correlation (GCC) is a classic method for estimating
TDOAs for an arbitrary set of frequencies [18, 19]. The GCC
represents an angular spectrogram (see Figure 2a): a function
of time-delay τ and time t, defined mathematically as,

Gτt =
∑
f

ψftVlftV
∗
rfte

j2πfτ (3)

where Vlft and Vrft are the left and right complex spectro-
grams, ∗ is elementwise complex conjugation, and ψft is a
time-varying frequency-weighting function.

Among the most robust localization algorithms in the
presence of interfering sounds and reverberation is the GCC
Phase Transform (GCC-PHAT) [20], for which the frequency-
weighting function is the inverse product of the left and right
magnitude spectrograms,

GPHAT
τt =

∑
f

VlftV
∗
rft

|Vlft| |Vrft|
ej2πfτ (4)

The angular spectrogram is then pooled over time, yielding
a summary angular spectrum, with the locations of the highest
peaks then corresponding to the source TDOA estimates (see
Figure 2b). The number of sources may be specified a priori, or
estimated, for example by performing a k-means clustering of
the local maxima amplitudes with k = 2. For small microphone
separations, a nonlinearity must be applied to compensate the
wide lobes of the resulting GCC,

GPHAT·NL
τt = 1− tanh

(
γ
√

1−GPHAT
τt

)
(5)

where γ = 2 is shown to work well in practice [20, 21].
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Figure 2: Source localization with GCC-PHAT for a 2 second
mixture of 3 speakers. a) The GCC-PHAT angular spectro-
gram, rectified for clarity. The intermittent horizontal traces
correspond to energy from the stationary speakers. b) The time-
averaged GCC-PHAT angular spectrum. Source TDOA esti-
mates τs are highlighted with dotted lines and triangle markers.

3. GCC-NMF Blind Speech Separation
In this section, we present the GCC-NMF separation algorithm.
We first combine NMF and GCC to provide spatial informa-
tion of individual dictionary atoms over time. Atoms are sub-
sequently grouped into sources according to their spatial origin,
with each group then reconstructed independently.
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3.1. Combining GCC and NMF

We begin by defining a set of GCC frequency-weighting func-
tions ψNMF

dft from the normalized NMF dictionary atoms,

ψNMF
dft =

1

|Vlft| |Vrft|
Wfd∑
f Wfd

(6)

constructed such that for a given atom d, frequencies are
weighted according to their relative prominence. GCC-NMF
is then the resulting set of atom-specific angular spectrograms,

GNMF
dτt =

∑
f

ψNMF
dft VlftV

∗
rfte

j2πfτ (7)
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Figure 3: Example GCC-NMF angular spectrograms GNMF
dτt .

For clarity of presentation, angular spectrograms are multiplied
by their corresponding coefficients, such that only active peri-
ods are shown, then rectified. Source-specific colors indicate to
which of three sources atoms are associated over time, accord-
ing to the procedure described in Section 3.2.

3.2. Coefficient Masking

The GCC-NMF angular spectrograms are used to associate each
dictionary atom at each time with a single source s. Source
TDOAs τs are first estimated using GCC-PHAT as described
in Section 2.2. For each time t, dictionary atoms are then at-
tributed to the source for which GNMF

dτst is highest. This defines
a set of source-specific binary coefficient masks,

Msdt =

{
1 if s = argmaxsG

NMF
dτst

0 otherwise
(8)

that are multiplied with the mixture coefficients element-wise
to create masked coefficients for each source.

3.3. Source Reconstruction

Source reconstruction is achieved by performing the inverse
NMF and time-frequency functions using the source-specific
masked coefficients,

V̂scft = Wfd (Msdt �Hcdt) (9)

X̂scn = STFT−1
(

V̂scft∠Vcft

)
(10)

where V̂scft are the source spectrograms estimates, X̂scn are
the time-domain source estimates, c indexes the stereo channels,
and t and n index time in the frequency and time domains. Note
that V̂scft are combined with the mixture spectrogram phase
prior to inverting the time-frequency transform.

3.4. GCC-NMF Separation System

We present a block diagram for the separation system in Figure
4, followed by a description of the system variables in Table 1.
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Figure 4: GCC-NMF source separation system, see Table 1
for variable descriptions. The separation system starts with
an encoding-decoding block, consisting of STFT and NMF.
A coefficient-masking block then interrupts the encoding-
decoding process, resulting in an encoding-separation-decoding
architecture. Bold arrows emphasize the encoding-decoding
process, while double arrows highlight source-specific signals.

s Source index
∑
s Xscn Input mixture

c Channel index Vcft STFT mixture
n Time index (input) |Vcft| STFT magnitude
t Time index (STFT) ∠Vcft STFT phase
f Frequency index Wfd Dictionary atoms
d Atom index Hcdt Atom coefficients
τs Source TDOAs Msdt Coefficient masks
Xscn Source signals Ĥscdt Masked coefficients
X̂scn Source estimates GNMF

dτt GCC-NMF

Table 1: Variable descriptions. Subscripts index dimensions of
multidimensional variables, lowercase symbols used as indexes.

4. Speech Separation Experiments
Experiments are performed using the SiSEC dev1 live speech
recordings dataset, constructed as “static sources played
through loudspeakers in a meeting room, recorded one at a
time” [6], consisting of sixteen 10-second mixtures of 3 and
4 female and male speakers, with 5 cm and 1 m microphone
separations, and 180 ms and 250 ms reverberation times. Com-
plex spectrograms are generated from the 16 kHz mixture sig-
nals with a short-time Fourier transform (STFT) using a 1024-
sample Hann window (64 ms), and 16-sample hop size (1 ms).
Default NMF parameters are set to 1024 dictionary atoms, 100
iterations, sparsity α = 0, cost function β = 1. The GCC non-
linearity is used for 5 cm microphone separations with γ = 3.
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Separation performance is quantified in terms of overall qual-
ity, target fidelity, interference suppression, and lack of arti-
facts using two open-source toolkits: PEASS [23] and BSS Eval
[24]. While the latter measures traditional signal-to-noise ratio
(SNR), the former is a perceptually-motivated approach whose
scores better correlate with human assessments.
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Figure 5: Effect of NMF parameters on separation performance
as measured with BSS Eval (top) and PEASS (bottom) scores.
Subplots depict average scores over the 56 sources of the dev1
SiSEC dataset for varying a) NMF dictionary size b) number
of NMF iterations c) sparsity coefficient α. Default values are
shown with dashed-lines.

4.1. Effects of NMF Parameters

In Figure 5, we present the effects on separation performance of
NMF dictionary size, number of iterations, and the sparsity co-
efficient α. For both SNR and perceptual measures, increasing
dictionary size results in increased target fidelity, lack of arti-
facts and overall score, saturating for larger dictionaries. While
SNR measures suggest interference suppression is independent
of dictionary size, the perceptual score shows a clear decrease
with increasing dictionary size. Dictionary size therefore of-

fers control of the tradeoff between interference suppression
and overall, target, and artifact scores. The number of iterations
has a similar, though less drastic effect, while increasing coeffi-
cient sparsity has the opposite effect: target, artifact, and over-
all scores decrease with increasing sparsity, while interference
suppression increases. We hypothesize that increasing sparsity
pushes NMF to learn atoms that are less well-suited for separa-
tion with GCC-NMF, but leave a proper study to future work.

4.2. Comparison with Model-based Approaches

In Table 2, we compare GCC-NMF with other NMF-based
speech separation algorithms, in addition to an oracle baseline.
FASST is a flexible, open-source, model-based approach com-
bining NMF with a spatial covariance mixing model [22]. In
the purely unsupervised setting, it is too sensitive to initializa-
tion and lacks robustness. For FASST-init, we therefore use an
oracle mixture initialization procedure, resulting in significantly
better performance, however requiring prior mixing model in-
formation. Note that while this semi-supervised approach out-
performs GCC-NMF according to the BSS Eval metrics, GCC-
NMF results in significantly better overall, target and interfer-
ence based PEASS scores, with a cost of increased artifacts. We
also present results of other semi-supervised and constrained
dictionary algorithms from the SiSEC campaign as presented in
[5, 6, 25], with GCC-NMF performing favourably despite being
a purely unsupervised approach.

5. Conclusion
We have introduced a new approach to combining spatial in-
formation with NMF for unsupervised speech separation. The
GCC method of source localization is used to localize individ-
ual dictionary atoms over time, such that they may be grouped
into sources based on their spatial origin. The resulting GCC-
NMF blind speech separation approach outperforms the unsu-
pervised model-based spatial covariance approach, and com-
pares favourably to semi-supervised and constrained NMF-
based approaches that leverage prior knowledge and informa-
tion. While the simple combination of GCC and NMF performs
well, more complex NMF models and other feature learning ap-
proaches are being studied. Finally, since coefficient masking is
performed on a frame-by-frame basis, real-time speech separa-
tion is also theoretically possible, provided dictionary learning
is performed offline.
Acknowledgements: ACELP/CEGI, NSERC discovery grant.

PEASS BSS Eval

OPS TPS IPS APS SDR ISR SIR SAR

GCC-NMF 33.16±5.34 54.62±10.16 47.33±12.05 46.85±7.68 3.00±1.16 6.84±2.65 5.90±4.33 6.18±1.30

FASST [22] 16.98±3.57 32.34±7.21 19.03±6.93 47.66±4.77 -1.70±0.79 2.15±1.01 -3.85±2.05 3.39±1.09

FASST-Init [22] 1 26.28±6.85 43.19±13.64 38.02±11.37 52.11±16.80 3.61±1.31 7.77±2.36 6.33±1.94 7.89±1.93

Ozerov [11] 2,3 34.87±6.73 57.16±6.75 47.40±8.60 56.55±8.84 4.07±2.55 8.99±3.96 7.80±4.73 7.37±2.63

Adiloglu [13] 2 34.59±6.05 58.11±5.13 45.24±8.75 58.80±7.75 3.61±1.96 8.35±3.32 7.03±4.18 7.49±2.38

IBM [6] 4 38.40±7.94 66.48±4.58 73.26±1.91 34.37±11.62 8.99±1.26 17.51±1.82 19.33±1.94 9.31±1.39

Table 2: Mean PEASS and BSSEval separation scores± standard deviation, taken over the SiSEC dev1 live speech recordings dataset.
OPS, TPS, IPS, APS: Oracle, target, interference, artifact-related perceptual scores. SDR, ISR, SIR, SAR: signal to distortion, source
image to spatial distortion, source to interference, source to artifacts ratios. 1 Oracle mixture initialization. 2 Constrained multilayer
NMF. 3 Condition-specific settings. 4 Oracle baseline: ideal binary mask.
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