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Abstract
Convolutional Neural Networks (CNNs) are effective mod-
els for reducing spectral variations and modeling spectral cor-
relations in acoustic features for automatic speech recogni-
tion (ASR). Hybrid speech recognition systems incorporating
CNNs with Hidden Markov Models/Gaussian Mixture Models
(HMMs/GMMs) have achieved the state-of-the-art in various
benchmarks. Meanwhile, Connectionist Temporal Classifica-
tion (CTC) with Recurrent Neural Networks (RNNs), which is
proposed for labeling unsegmented sequences, makes it feasi-
ble to train an ‘end-to-end’ speech recognition system instead
of hybrid settings. However, RNNs are computationally expen-
sive and sometimes difficult to train. In this paper, inspired by
the advantages of both CNNs and the CTC approach, we pro-
pose an end-to-end speech framework for sequence labeling, by
combining hierarchical CNNs with CTC directly without recur-
rent connections. By evaluating the approach on the TIMIT
phoneme recognition task, we show that the proposed model is
not only computationally efficient, but also competitive with the
existing baseline systems. Moreover, we argue that CNNs have
the capability to model temporal correlations with appropriate
context information.

Index Terms: speech recognition, convolutional neural net-
works, connectionist temporal classification

1. Introduction
Recently, Convolutional Neural Networks (CNNs) [1] have
achieved great success in acoustic modeling [2, 3, 4]. In the
context of Automatic Speech Recognition, CNNs are usually
combined with HMMs/GMMs [5, 6], like regular Deep Neural
Networks (DNNs), which results in a hybrid system [2, 3, 4].
In the typical hybrid system, the neural net is trained to predict
frame-level targets obtained from a forced alignment generated
by an HMM/GMM system. The temporal modeling and decod-
ing operations are still handled by an HMM but the posterior
state predictions are generated using the neural network.

This hybrid approach is problematic in that training the dif-
ferent modules separately with different criteria may not be
optimal for solving the final task. As a consequence, it of-
ten requires additional hyperparameter tuning for each training
stage which can be laborious and time consuming. Furthermore,
these issues have motivated a recent surge of interests in train-
ing ‘end-to-end’ systems [7, 8, 9]. End-to-end neural systems
for speech recognition typically replace the HMM with a neu-

ral network that provides a distribution over sequences directly.
Two popular neural network sequence models are Connection-
ist Temporal Classification (CTC) [10] and recurrent models for
sequence generation [8, 11].

To the best of our knowledge, all end-to-end neural speech
recognition systems employ recurrent neural networks in at
least some part of the processing pipeline. The most successful
recurrent neural network architecture used in this context is the
Long Short-Term Memory (LSTM) [12, 13, 14, 15]. For exam-
ple, a model with multiple layers of bi-directional LSTMs and
CTC on top which is pre-trained with the transducer networks
[12, 13] obtained the state-of-the-art on the TIMIT dataset. Af-
ter these successes on phoneme recognition, similar systems
have been proposed in which multiple layers of RNNs were
combined with CTC to perform large vocabulary continuous
speech recognition [7, 16]. It seems that RNNs have become
somewhat of a default method for end-to-end models while hy-
brid systems still tend to rely on feed-forward architectures.

While the results of these RNN-based end-to-end systems
are impressive, there are two important downsides to using
RNNs/LSTMs: (1) The training speed can be very slow due to
the iterative multiplications over time when the input sequence
is very long; (2) The training process is sometimes tricky due
to the well-known problem of gradient vanishing/exploding
[17, 18]. Although various approaches have been proposed to
address these issues, such as data/model parallelization across
multiple GPUs [7, 19] and careful initializations for recurrent
connections [20], those models still suffer from computation-
ally intensive and otherwise demanding training procedures.

Inspired by the strengths of both CNNs and CTC, we pro-
pose an end-to-end speech framework in which we combine
CNNs with CTC without intermediate recurrent layers. We
present experiments on the TIMIT dataset and show that such
a system is able to obtain results that are comparable to those
obtained with multiple layers of LSTMs. The only previous at-
tempt to combine CNNs with CTC that we know about [21],
led to results that were far from the state-of-the-art. It is not
straightforward to incorporate CNN into an end-to-end manner
since the task may require the model to incorporate long-term
dependencies. While RNNs can learn these kind of dependen-
cies and have been combined with CTC for this very reason, it
was not known whether CNNs were able to learn the required
temporal relationships.

In this paper, we argue that in a CNN of sufficient depth, the
higher-layer features are capable of capturing temporal depen-
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Figure 1: The convolution layer and max-pooling layer applied
upon input features.

dencies with suitable context information. Using small filter
sizes along the spectrogram frequency axis, the model is able
to learn fine-grained localized features, while multiple stacked
convolutional layers help to learn diverse features on different
time/frequency scales and provide the required non-linear mod-
eling capabilities.

Unlike the time windows applied in DNN systems [2, 3, 4],
the temporal modeling is deployed within convolutional lay-
ers, where we perform a 2D convolution similar to vision tasks,
and multiple convolutional layers are stacked to provide a rel-
atively large context window for each output prediction of the
highest layer. The convolutional layers are followed by mul-
tiple fully connected layers and, finally, CTC is added on the
top of the model. Following the suggestion from [4], we only
perform pooling along the frequency band on the first convolu-
tional layer. Specifically, we evaluate our model on phoneme
recognition for the TIMIT dataset.

2. Convolutional Neural Networks
Most of the CNN models [2, 3, 4] in the speech domain have
large filters and use limited weight sharing which splits the fea-
tures into limited frequency bands while performing convolu-
tion separately and the convolution is usually applied with no
more than 3 layers. In this section, we describe our CNN acous-
tic model whose architecture is different from the above. The
complete CNN includes stacked convolutional and pooling lay-
ers, at the top of which are multiple fully-connected layers.

Since CNNs are adept at modeling local structures in the in-
puts, we use log mel-filter-bank (plus energy term) coefficients
with deltas and delta-deltas which preserve the local correla-
tions of the spectrogram.

2.1. Convolution

As shown in Figure 1, given a sequence of acoustic feature val-
ues X ∈ R

c×b×f with number of channels c, frequency band-
width b, and time length f , the convolutional layer convolves
X with k filters {Wi}k where each Wi ∈ R

c×m×n is a 3D
tensor with its width along the frequency axis equal to m and
its length along frame axis equal to n. The resulting k pre-
activation feature maps consist of a 3D tensor H ∈ R

k×bH×fH ,
in which each feature map Hi is computed as follows:

Hi = Wi ∗X+ bi, i = 1, · · · , k. (1)

The symbol ∗ denotes the convolution operation and bi is a bias
parameter. There are three points that are worth mentioning:
(1) The sequence length fH of H after convolution is guaran-

Figure 2: ReLU, PReLU and Maxout activation functions.

teed to be equal to the input X’s sequence length f by applying
zero padding along the frame axis before each convolution; (2)
The convolution stride is chosen to be 1 for all the convolu-
tion operations in our model; (3) We do not use limited weight
sharing which splits the frequency bands into groups of limited
bandwidths and convolution is done within each group sepa-
rately. Instead, we perform the convolution over X not only
along the frequency axis but also along the time axis, which re-
sults in a simple 2D convolution commonly used in computer
vision.

2.2. Activation Function

The pre-activation feature maps H are passed through non-
linear activation functions. We introduce three activation func-
tions in the following and show their functionalities in the con-
volutional layer as an example, notice that all the operations
below are element-wise.

2.2.1. Rectifier Linear Unit

Rectifier Linear Unit (ReLU) [22] is a piece-wise linear activa-
tion function that outputs zero if the input is negative and out-
puts the input itself otherwise. Formally, given single feature
map Hi, a ReLU function is defined as follows:

H̃i = max(0,Hi), (2)

in which H and H̃ are the input and output respectively.

2.2.2. Parametric Rectifier Linear Unit

The Parametric Rectifier Linear Unit (PReLU) [23] is an exten-
sion of the ReLU in which the output of the model in the regions
that input is negative is a linear function of the input with a slope
of α. PReLU is formalized as:

H̃i =

{
Hi, if Hi > 0

αHi, otherwise
(3)

The extra parameter α is usually initialized to 0.1 and can be
trained using backpropagation.

2.2.3. Maxout

Another type of activation function which has been shown to
improve the results for the task of speech recognition [16, 24,
25, 26] is the maxout function [27]. Following the same com-
putational process as in [27], we take the number of piece-wise
linear functions as 2 for example. Then for H̃ we have:

H̃i = max(H′i,H
′′
i ), (4)

where for H′i and H′′i we have:

H′i = W′
i ∗X+ b′i, H′′i = W′′

i ∗X+ b′′i , (5)
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which are two linear feature map candidates after the convolu-
tion, and X is the input of the convolutional layer at Hi. Figure
2 depicts the ReLU, PReLU, and Maxout activation functions.

2.3. Pooling

After the element-wise non-linearities, the features will pass
through a max-pooling layer which outputs the maximum unit
from p adjacent units. We do pooling only along the frequency
axis since it helps to reduce spectral variations within the same
speaker and between different speakers [28], while pooling in
time has been shown to be less helpful [4]. Specifically, sup-
pose that the i th feature map before and after pooling are H̃i

and Ĥi, then [Ĥi]r,t at position (r, t) is computed by:

[Ĥi]r,t = maxpj=1{[H̃i]r×s+j,t}, (6)

where s is the step size and p is the pooling size, and all the
[H̃i]r×s+j,t values inside the max have the same time index
t. Consequently, the feature maps after pooling have the same
sequence lengths as the ones before pooling. As shown in Fig-
ure 3, we follow the suggestions from [4] that the max pooling is
performed only once after the first convolutional layer. Our in-
tuition is that as more pooling layers are applied, units in higher
layers would be less discriminative with respect to the variations
in input features.

3. Connectionist Temporal Classification
Consider any sequence to sequence mapping task in which X =
{X1, ..., XT } is the input sequence and Z = {Z1, · · · , ZL}
is the target sequence. In the case of speech recognition, X is
the acoustic signal and Z is a sequence of symbols. In order to
train the neural acoustic model, Pr(Z|X) must be maximized
for each input-output pair.

One way to provide a distribution over variable length out-
put sequences given some much longer input sequence, is to
introduce a many-to-one mapping of latent variable sequences
O = {O1, · · · , OT } to shorter sequences that serve as the fi-
nal predictions. The probability of some sequence Z can then
be defined to be the sum of the probabilities of all the latent
sequences that map to that sequence. Connectionist Temporal
Classification (CTC) [29] specifies a distribution over latent se-
quences by applying a softmax function to the output of the net-
work for every time step, which provides a probability for emit-
ting each label from the alphabet of output symbols at that time
step Pr(Ot|X). An extra blank output class ‘-’ is introduced
to the alphabet for the latent sequences to represent the proba-
bility of not outputting a symbol at a particular time step. Each
latent sequence sampled from this distribution can now be trans-
formed into an output sequence using the many-to-one mapping
function σ(·) which first merges the repetitions of consecutive
non-blank labels to a single label and subsequently removes the
blank labels as shown in Equation 7:

σ(a, b, c,−,−)
σ(a, b,−, c, c)
σ(a, a, b, b, c)
σ(−, a,−, b, c)

...
σ(−,−, a, b, c)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= (a, b, c). (7)

Therefore, the final output sequence probability is a summation
over all possible sequences π that yield to Z after applying the

Figure 3: Network structure for phoneme recognition on the
TIMIT dataset. The model consists of 10 convolutional layers
followed by 3 fully-connected layers on the top. All convolu-
tional layers have the filter size of 3×5 and we use max-pooling
with size of 3 × 1 only after the first convolutional layer. First
and second numbers correspond to frequency and time axes re-
spectively.

function σ:

Pr(Z|X) = Σo∈σ−1(Z)Pr(O|X). (8)

A dynamic programming algorithm similar to the forward al-
gorithm for HMMs [29] is used to compute the sum in Equa-
tion 8 in an efficient way. The intermediate values of this dy-
namic programming can also be used to compute the gradient
of lnPr(Z|X) with respect to the neural network outputs effi-
ciently.

To generate predictions from a trained model using CTC,
we use the best path decoding algorithm. Since the model as-
sumes that the latent symbols are independent given the network
outputs in the framewise case, the latent sequence with the high-
est probability is simply obtained by emitting the most probable
label at each time-step. The predicted sequence is then given by
applying σ(·) to that latent sequence prediction:

L ≈ σ(π∗), (9)

in which π∗ is the concatenation of the most probable output
and is formalized by π∗ = ArgmaxπPr(π|X). Note that this
is not necessarily the output sequence with the highest probabil-
ity. Finding this sequence is generally not tractable and requires
some approximate search procedure like a beam-search.

4. Experiments
In this section, we evaluate the proposed model on phoneme
recognition for the TIMIT dataset. The model architecture is
shown in Figure 3.

4.1. Data

We evaluate our models on the TIMIT [30] corpus where we
use the standard 462-speaker training set with all SA records
removed. The 50-speaker development set is used for early
stopping. The evaluation is performed on the core test set (in-
cluding 192 sentences). The raw audio is transformed into 40-
dimensional log mel-filter-bank (plus energy term) coefficients
with deltas and delta-deltas, which results in 123 dimensional
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features. Each dimension is normalized to have zero mean and
unit variance over the training set. We use 61 phone labels plus
a blank label for training and then the output is mapped to 39
phonemes for scoring.

4.2. Models

Our best model consists of 10 convolutional layers and 3 fully-
connected hidden layers. Unlike the other layers, the first con-
volutional layer is followed by a pooling layer, which is de-
scribed in section 2. The pooling size is 3 × 1, which means
we only pool over the frequency axis. The filter size is 3 × 5
across the layers. The model has 128 feature maps in the first
four convolutional layers and 256 feature maps in the remaining
six convolutional layers. Each fully-connected layer has 1024
units. Maxout with 2 piece-wise linear functions is used as the
activation function. Some other architectures are also evaluated
for comparison, see section 4.4 for more details.

4.3. Training and Evaluation

To optimize the model, we use Adam [31] with learning rate
10−4. Stochastic gradient descent with learning rate 10−5 is
then used for fine-tuning. Batch size 20 is used during train-
ing. The initial weight values were drawn uniformly from the
interval [−0.05, 0.05]. Dropout [32] with a probability of 0.3 is
added across the layers except for the input and output layers .
L2 norm with coefficient 1e− 5 is applied at fine-tuning stage.
At test time, simple best path decoding (at the CTC frame level)
is used to get the predicted sequences.

4.4. Results

Our model achieves 18.2% phoneme error rate on the core test
set, which is slightly better than the LSTM baseline model and
the transducer model with an explicit RNN language model.
The details are presented in Table 1. Notice that the CNN model
could take much less time to train in comparison with the LSTM
model when keeping roughly the same number of parameters.
In our setup on TIMIT, we get 2.5× faster training speed by
using the CNN model without deliberately optimizing the im-
plementation. We suppose that the gain of the computation ef-
ficiency might be more dramatic with a larger dataset.

To further investigate the different structural aspects of our
model, we disentangle the analysis into three sub-experiments
considering the number of convolutional layers, the filter sizes
and the activation functions, as shown in table 1. It turns out
that the model may benefit from (1) more layers, which results
in more nonlinearities and larger input receptive fields for units
in the top layers; (2) reasonably large context windows, which
help the model to capture the spatial/temporal relations of in-
put sequences in reasonable time-scales; (3) the Maxout unit,
which has more functional freedoms comparing to ReLU and
parametric ReLU.

5. Discussion
Our results showed that convolutional architectures with CTC
cost can achieve results comparable to the state-of-the-art by
adopting the following methodology: (1) Using a significantly
deeper architecture that results in a more non-linear function
and also wider receptive fields along both frequency and tem-
poral axes; (2) Using maxout non-linearities in order to make
the optimization easier; and (3) Careful model regularization
that yields better generalization in test time, especially for small

Table 1: Phoneme Error Rate (PER) on TIMIT. ’NP’ is the num-
ber of parameters. ’BiLSTM-3L-250H’ denotes the model has
3 bidirectional LSTM layers with 250 units in each direction.
In the CNN model, (3, 5) is the filter size. Results suggest that
deeper architecture and larger filter sizes leads to better perfor-
mance. The best performing model on Development set, has a
test PER of 18.2 %

Model NP Dev PER Test PER

BiLSTM-3L-250H [12] 3.8M - 18.6%
BiLSTM-5L-250H [12] 6.8M - 18.4%
TRANS-3L-250H [12] 4.3M - 18.3%
CNN-(3,5)-10L-ReLU 4.3M 17.4% 19.3%
CNN-(3,5)-10L-PReLU 4.3M 17.2% 18.9%
CNN-(3,5)-6L-maxout 4.3M 18.7% 21.2%
CNN-(3,5)-8L-maxout 4.3M 17.7% 19.8%
CNN-(3,3)-10L-maxout 4.3M 18.4% 19.9%
CNN-(3,5)-10L-maxout 4.3M 16.7% 18.2%

datasets such as TIMIT, where over-fitting happens easily.
We conjecture that the convolutional CTC model might

be easier to train on phoneme-level sequences rather than the
character-level. Our intuition is that the local structures within
the phonemes are more robust and can easily be captured by the
model. Additionally, phoneme-level training might not require
the modeling of many long-term dependencies in comparison
with character-level training. As a result, for a convolutional
model, learning the phonemes structure seems to be easier, but
empirical research needs to be done to investigate if this is in-
deed the case.

Finally, an important point that favors convolutional over
recurrent architectures is the training speed. In a CNN, the train-
ing time can be rendered virtually independent of the length of
the input sequence due to the parallel nature of convolutional
models and the highly optimized CNN libraries available [33].
Computations in a recurrent model are sequential and cannot
be easily parallelized. The training time for RNNs increases at
least linearly with the length of the input sequence.

6. Conclusions
In this work, we present a CNN-based end-to-end speech recog-
nition framework without recurrent neural networks which are
widely used in speech recognition tasks. We show promising
results on the TIMIT dataset and conclude that the model has
the capacity to learn the temporal relations that are required
for it to be integrated with CTC. We already observed a gain
in computational efficiency on the TIMIT dataset and training
the model on large vocabulary datasets and integrate with the
language model would be a part of our further study. Another
interesting direction is to apply Batch Normalization [34] to the
current model.
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