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Abstract

This paper proposes several improvements to multilingual train-
ing of neural network acoustic models for speech recognition
and keyword spotting in the context of low-resource languages.
We concentrate on the stacked architecture where the first net-
work is used as a bottleneck feature extractor and the second
network as the acoustic model. We propose to improve multilin-
gual training when the amount of data from different languages
is very different by applying balancing scalers to the training
examples. We also explore how to exploit multilingual data to
train the second neural network of the stacked architecture. An
ensemble training method that can take advantage of both un-
supervised pretraining as well as multilingual training is found
to give the best speech recognition performance across a wide
variety of languages, while system combination of differently
trained multilingual models results in further improvements in
keyword search performance.

Index Terms: speech recognition, keyword spotting, multilin-
gual training, deep learning, system combination

1. Introduction

Multilingual training strategies for speech recognition and key-
word search (KWS) of low-resourced languages have recently
gained much attention [1, 2, 3, 4]. Deep neural network (DNN)
based acoustic models trained jointly on several languages and
later ported to the target language outperform models trained
only on the target language data, especially when the amount of
labelled data from the target language is limited.

This paper investigates two methods for enhanced multilin-
gual training of DNN acoustic models, using the IARPA Babel
project [5] final year (OP3) development languages as the main
focus. The first method tackles the unbalanced data problem
when training a multilingual bottleneck (BN) feature extrac-
tor on languages with varying amounts of data. Research has
shown that increasing the number of languages used for train-
ing multilingual DNN models improves the accuracy of speech
recognition and keyword spotting in the target language [3].
However, it has also been shown that the choice of languages
that are used for training multilingual models has an impact on
the model performance on the target language, even after fine-
tuning the multilingual model on target language data: using
languages similar to the target language are more beneficial as
donor languages for multilingual training [6].

Although careful selection of donor languages can improve
the final system accuracy, it can require prohibitively large
resources when rapid porting to several target languages is
needed. Therefore, it is beneficial to have a robust multilingual
donor model that works well across all target languages, with-
out major risks of having the multilingual model dominated by
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languages that are very distinct from the target. Another point
to consider when training multilingual models is the skewness
of the data: in many real-world scenarios, the amount of avail-
able training data from different languages can vary hugely.
Combining such unbalanced corpora for multilingual training
has the danger of having the final model completely dominated
by the language(s) with large amounts of data, while the minor
languages do not have much effect of on the final multilingual
model. Furthermore, it has been shown that training a multi-
lingual feature extractor on heavily inbalanced data can cause
degradation of the final system [7].

One method to solve the data skewness problem is under-
sampling the languages with large amounts of training data, or
oversampling the languages with less data. However, if we
over-sample the languages with less data to make them bal-
anced with the language with the most data, we also increase
the training time of the model, possibly by many orders of mag-
nitude. On the other hand, under-sampling the language with
large amount of data has the risk of potentially removing im-
portant training examples at each epoch. Instead of data re-
sampling, we propose to scale the training examples so that the
total contribution from each language over each epoch will be
equal. A similar approach has been previously used for balanc-
ing training data across labels in a different machine learning
task [8]. We evaluate the method on an unbalanced dataset with
six languages. Five different languages are used as targets.

The second problem that is investigated in the paper con-
siders multilingual training for the stacked hybrid architecture.
This architecture consists of two DNNs that are trained sepa-
rately: the first model is used for extracting BN features and the
second for computing state-level posteriors for HMM decoding.
Most previous experiments with multilingual DNNs have fo-
cused on two other common architectures used in speech recog-
nition: bottleneck based tandem architecture, where a DNN
(or a stack of two DNNG5) is used for computing the BN fea-
tures and a GMM is used for computing observation proba-
bilities [9, 10, 11, 12, 3, 6], and the (unstacked) hybrid archi-
tecture, consisting of one DNN (or CNN) that computes state
posteriors directly based on MFCC, PLP or filterbank features
[13, 14, 15, 4]. We are not aware of any published work where
multilingual data is used for training the second DNN of the
stacked hybrid architecture. We focus on this architecture be-
cause we have found it to work robustly and accurately across
many different decoding tasks. We compare the performance of
three systems where the second DNN of the stacked architecture
is either pre-trained on target language data, initialized using the
multilingual model, or trained jointly using both of the initial-
izations. We also compare keyword search performance of the
three systems and their different combinations.
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2. Experimental setup

We use the Sage ASR toolkit [16] for all experiments. Sage
is BBN’s newly developed STT platform that integrates tech-
nologies from multiple sources, each of which has a particu-
lar strength. In Sage, we combine proprietary sources, such as
BBN’s Byblos [17], with open source toolkits, such as Kaldi
[18], CNTK [19] and Tensorflow. Sage also includes a cross-
toolkit FST recognizer that supports models built using the var-
ious component technologies, and software supporting keyword
search from Byblos [20].

We use 32 filterbank features, combined with 3 Kaldi pitch
features as input to the BN DNNs. The input features are
stacked to accumulate a temporal context of 11 frames. The
bottleneck networks have two hidden layers before and one af-
ter the bottleneck layer. The bottleneck layer has a dimension-
ality of 40. The bottleneck features are used for GMM-based
speaker-adapted training (SAT), and the fMLLR-transformed
bottleneck features are used as input to the second DNN which
is used as the acoustic model (AM) in the hybrid DNN-HMM
setup. The DNN-AM uses a temporal context of 13 stacked
frames, it has six 2048-dimensional hidden layers with the sig-
moid activation function, and the output layer has approxi-
mately 4500 tied-state targets. Unsupervised RBM-based pre-
training is used to initialize the weights of the hidden layers.

The multilingual bottleneck networks have language-
specific block-softmax output layers [10] with approximately
4500 context-dependent targets per language. The multilingual
BN DNN is ported to the target language by first replacing the
block-softmax with the target language softmax, training the
softmax for two epochs while keeping the rest of the model
fixed, and finally training the whole model for four epochs, us-
ing a 10 times smaller learning rate than the original.

Experiments are performed on data from the final year of
the JARPA Babel program [5]: Amharic (IARPA-babel307b-
v1.0b), Dholuo (IARPA-babel403b-v1.0b), Guarani (IARPA-
babel305b-v1.0c), Igbo (IARPA-babel306b-v2.0c), Javanese
(IARPA-babel402b-v1.0b), Mongolian (IARPA-babel401b-
v2.0b) and Pashto (IARPA-babell04b-v0.bY). For each lan-
guage, the full language pack (FLP) is used, containing approx-
imately 40 hours of transcribed audio — the audio is conver-
sational telephone speech collected in a variety of conditions.
Lexicons are derived using simple G2P rules [21]. Trigram lan-
guage models are built from the training transcriptions. Decod-
ing is performed on an additional 10 hours of development data,
and keyword search uses a set of approximately 2000 keywords
for each language. Both whole word and phonetic search are
used for keyword spotting [22].

Actual term-weighted value (ATWYV) is the primary mea-
sure of interest for the TARPA Babel program. ATWYV was also
used in the NIST 2006 Spoken Term Detection evaluation [23].
The keyword specific ATWYV for keyword k at a specific thresh-
old ¢ can be computed by

ATWV(k,t) =1 — Ppr(k,t) — BPra(k,t) (€))
where Prr and Pr4 refer to the probability of a false reject
(miss) and false accept, respectively. The constant 5 — set to
a value of 999.9 — defines the trade off between false accepts
and false rejects. In this performance metric, all keywords are
equally weighted. Missing a single occurrence of a rare word
can affect the final score as much as missing a more common
word dozens of times. While ATWV numbers are commonly
reported for in-vocabulary and out-of-vocabulary (OOV) key-
words separately, we report only the overall performance.
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3. Balanced training of multilingual
bottleneck features

This experiment investigates whether a strongly imbalanced
multilingual dataset can be artificially rebalanced in order to
increase the performance of the multilingual bottleneck feature
extractor trained on the dataset.

During training of the bottleneck feature extractor, we usu-
ally pool the data across all languages together and train a DNN,
using a block-softmax output layer. Since one or more lan-
guages are over-represented in the language pool, it becomes
profitable for the learning process to optimize the hidden layers,
including the bottleneck, so that the targets of the dominating
language(s) are classified with high probability while putting
less emphasis on the classification accuracy of the minor lan-
guages. Although we are not really interested in the classifica-
tion accuracy of the DNN but the performance of the bottleneck
feature extractor, such imbalanced training may also make the
bottleneck skewed towards the dominating language(s).

In order to make the training balanced across languages, we
scale each example using a language-specific parameter a;:
N N
TN |L|
where N is the number of total frames in the multilingual
dataset, N; is the number of frames per language ¢ and |L]| is
the number of languages in the pool. N is thus the average
number of frames per language. The scaler o is larger than
one for under-represented languages and less then one for over-
represented languages. During training, the log probability of
each training example in the cross-entropy cost function is sim-
ply multiplied by the scaler:

N =

K
F(0) == o, log p(yslai; 0)
i=1

where K is the total number of examples, and /; the language of
the i-th example. Note that the sum of the scalers over all data is
equal to the number of examples. This means that we shouldn’t
have to worry about changing the learning rate of training when
we use the scaled examples.

To evaluate the method, we trained two bottleneck feature
extractors on a dataset of six languages (see Table 1). The
dataset is imbalanced: English, a random 800 hour subset of the
Fisher corpusl, has about 10 or more times data than the other
five languages (all from the previous BABEL program periods).
In one of the experiments we applied language-specific scalers
to training examples to make the dataset balanced. Table 1 lists
the final validation set frame accuracies of the trained DNNs.
The results are as expected: balanced training decreases frame
accuracy for the one language that is scaled down and increases
it for the under-represented languages that are scaled up.

Next, we ported both bottleneck DNNs to five target lan-
guages, and built two separate hybrid DNN systems on top of
the extracted features for each of the target languages, using the
procedure described in section 2. The WER results are listed
in Table 2. For comparison, we also list the WERs of the sys-
tems with a monolingual bottleneck feature extractor. All the
multilingual systems perform better than the baseline monolin-
gual systems. The differences between using the unbalanced
and balanced feature extractors are small. The largest differ-
ence is for Javanese, where the balanced system gives a 0.8%
absolute improvement in WER.

'LDC2004S13, LDC2004T19, LDC2005S13, LDC2005T19



Table 1: Amount of training data per language, language
scaler, and final validation set frame accuracies for imbalanced
and balanced bottleneck DNN training.

Language  Hours  Scaler  Imbalanced  Balanced

Frame Acc ~ Frame Acc
English 798  0.24 43.1 40.3
Turkish 88 2.14 374 38.4
Lao 85 221 46.7 48.2
Haitian 80  2.35 43.4 45.1
Lithuanian 41 4.53 36.6 37.9
Telugu 40 4.63 38.8 39.9

Table 2: WER results for the systems with monolingual, unbal-
anced multilingual and balanced multilingual bottlenecks.

Language  Monolingual Unbalanced Balanced

multilingual — multilingual
Amharic 45.0 43.0 433
Guarani 475 45.0 45.1
Igbo 57.1 54.7 54.7
Javanese 55.7 53.1 52.3
Mongolian 50.7 48.7 48.7

Although it is evident that the balanced system does not
give significant improvements across all languages, we claim
that it reduces the risk of having a multilingual system unsuit-
able for some of the target languages, if the variety of the lan-
guages in the multilingual pool is high enough. Also, it is pos-
sible that the balancing method is actually too aggressive and it
has a negative impact on the robustness of the DNN: in our ex-
periment, some of the languages received a scaler of over 4.5,
while English was suppressed using a scaler of 0.24 (see Ta-
ble 1). It is possible to reduce the magnitude of the scaling
factors by introducing a constant £ < 1, as proposed in [8]:

Nk
o = (N%) . For example, setting &k = 0.5 would bring the
scalers of our experiment closer to one, from the range of [0.24,
4.5]to [0.49, 2.2]. Experimenting with the magnitude is subject
of our future work.

4. Porting multilingual stacked DNN
acoustic models

This section describes our approach to training and porting mul-
tilingual stacked DNN acoustic models (DNN-AMs).

In this experiment, 21 languages were used for training
multilingual models: 17 languages from the previous Babel
program periods (Turkish, Pashto, Tagalog, Cantonese, Viet-
namese, Assamese, Bengali, Haitian, Lao, Zulu, Tamil, Ce-
buano, Kazakh, Kurdish, Lithuanian, Telugu, Tok Pisin), with
40-80 hours per language, and four non-Babel languages: Ara-
bic (Levantine Arabic QT training data’, 250 hours), Spanish
(Fisher, CallHome and Hub5>, 250 hours), Mandarin (HKUST,
CallHome and Hub5*, 250 hours) and English (a random 250-
hour subset of the Fisher corpus).

2LDC2006829, LDC2006T07

3LDC2010S01,  LDC2010T04, LDC96S35,  LDC96T17,
LDC96L16, LDC98S70, LDC98T27
4LDC2005S15,  LDC2005T32, LDC96S34,  LDC96T16,

LDC96L15, LDC98S69, LDC98T26, LDC96L15
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Table 3: WER results of various mono/multilingual systems for
Swahili. Unported multilingual DNN-AM (*) includes a soft-

max output layer trained on target language data.

BN DNN-AM WER
Monolingual Monolingual 41.9
Unported multilingual ~ Monolingual 41.1
Ported multilingual Monolingual 39.6
Unported multilingual ~ Unported multilingual®  41.1
Ported multilingual Unported multilingual®  40.6
Unported multilingual ~ Ported multilingual 39.8
Ported multilingual Ported multilingual 38.7
Ported multilingual Mono/multi DPET [25] 39.3

4.1. Training multilingual stacked DNN-AMs

After training a multilingual BN extractor, we dump the BN
features for all training languages. Next, we train a GMM-
HMM system with SAT for each language. As in monolingual
training, the GMM system built on bottleneck features is only
needed for obtaining fMLLR transforms. The fMLLR trans-
forms are estimated independently for each language. Next, the
second multilingual DNN is trained on the fMLLR-transformed
multilingual bottleneck features. We initialize the weights of
the multilingual DNN-AM using RBM-based unsupervised pre-
training. The architecture of the multilingual DNN-AM is sim-
ilar to our monolingual DNN-AM, only the hidden layer be-
fore the block-softmax is replaced with a dimension-reducing
p-norm non-linearity [24] with 3500 input units and 350 out-
put units, as opposed to 2048 sigmoid units that is used in
the monolingual DNN-AM. Since the block-softmax layer of
a multilingual DNN-AM is very large (around 100 000 in our
experiments), this change greatly reduces the number of param-
eters of the final hidden layer and thus the whole multilingual
DNN-AM and makes DNN training much faster.

The strategy of porting the multilingual stacked hybrid
model to the target language is similar to porting of stacked
bottleneck feature extractors [3]. First, we fine-tune the bot-
tleneck DNN, as described in Section 2. The fine-tuned BN-
DNN is used for extracting bottleneck features for the target
language. A GMM system is trained on the features to obtain
the fMLLR transforms for the target language, which are used
for transforming the input features for the second DNN. Next,
we initialize the softmax of the second DNN, train it for two
epochs, and finally train the whole DNN for four epochs, using
a smaller learning rate.

The described porting procedure was verified using Swahili
(IARPA-babel202-B-v1d) as a development language. Table 3
lists WERs of several cross-entropy trained systems that differ
in their degree on multilingual training and porting to target lan-
guage. It is worth noting that a system with unported multilin-
gual features and unported multilingual DNN-AM, having only
the softmax layer trained for the target language, achieves better
WER (41.1%) than the pure monolingual system (41.9%). The
results also confirm that although the multilingual DNN-AM
is trained on unported multilingual data, and porting the fea-
ture extractor to target language prior to porting the DNN-AM
might seem counter-intuitive, such porting strategy decreases
the WER of the system. A similar pattern has been noticed
when porting stacked bottleneck models [3]. Furthermore, it
is surprising that porting the bottleneck model helps (41.1 —
40.6) even when the multilingual DNN-AM is not ported and
only the final softmax is language-specific.



Table 4: WER/ATWV results of various monolingual and multilingual systems and their KWS combinations. Mono/multi DNN-AM is
trained using the diveristy penalizing ensemble method [25] from both monolingual and multilingual initializations.

Bottleneck | DNN-AM Ambharic Dholuo Guarani Igbo Javanese  Mongolian Pashto

A | Mono Mono 44.0/0.594  39.0/0.618 46.3/0.551 56.0/0.342 55.2/0.437 49.8/0.487 48.1/0.419
B | Multi Mono 41.4/0.631 36.8/0.653  43.3/0.599 53.0/0.401 51.6/0.485 46.9/0.530 45.6/0.454
C | Multi Multi 41.7/0.631  36.7/0.659 43.3/0.596 53.3/0.394 51.2/0.494 47.4/0.523  45.4/0.465
D | Multi Mono/multi | 41.3/0.633  36.6/0.651 43.0/0.598 52.7/0.402 51.2/0.491 46.8/0.531 45.1/0.465
A+B 0.641 0.658 0.604 0.403 0.497 0.541 0.463

A+B+C 0.647 0.667 0.609 0.407 0.512 0.548 0.475

A+B+C+D 0.648 0.668 0.609 0.410 0.514 0.549 0.476

4.2. Ensemble training from monolingual and multilingual
initialization

In previous work we have established that for training data
sizes similar to the ones used in this experiment (40 hours per
language), layer-wise unsupervised pre-training gives signifi-
cant improvement in WER and keyword search performance,
as opposed to starting from randomly initialized weights or us-
ing layer-wise discriminative pre-training. While the porting
of the multilingual DNN acoustic model to the target language
can exploit the high level phonetic features that emerge during
multilingual training, it cannot take advantage of hierarchical
patterns discovered using pre-training on target language data.
However, unsupervised layer-wise pre-training and porting the
multilingual model are very similar in how they work: they are
both different forms of weight initialization, and they both start
with a randomly initialized softmax layer. Therefore we also
experimented with training two DNNs with the different initial-
izations jointly, using a diversity-penalizing ensemble training
(DPET) method [25]. This method uses an objective function
that encourages the models to produce similar values across
their output space, letting the models thereby learn from each
other. Note that although the two models are trained as an en-
semble, only one of them is used in decoding. As the models
are trained to produce similar outputs, the final models can be
used interchangeably. In our experiments, we used the model
that was initialized with pre-training on target language data, as
its frame accuracy on held-out data was slightly higher on most
languages. We also observed that DPET resulted in consistently
lower heldout data log likelihoods and higher frame accuracies
than training individual models either from pre-trained or mul-
tilingual initialization. Performance of the model trained using
the ensemble method on Swahili is also given in Table 3.

4.3. Results on the main test languages

Based on the Swabhili results, we concentrated our further ex-
periments on three multilingual stacked hybrid models. In all
models, we used the multilingual bottleneck features ported
to the target language as input. The DNN-AM was based ei-
ther on monolingual unsupervised pre-training, ported from the
multilingual DNN-AM, or trained from both initializations us-
ing DPET. The speech recognition and keyword search perfor-
mance was tested on all seven BABEL OP3 languages. Con-
trary to the development experiments on Swahili, we also ap-
plied sMBR-based sequence-discriminative training [26] to the
models for further improvement. Tabel 4 lists the WER and
ATWYV results of the monolingual model and the three multi-
lingual models with differently trained DNN-AMs. We observe
that all multilingual models give large gains over the monolin-
gual baseline. The multilingual model trained using the ensem-
ble method results in the best WER for all seven languages,
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although the differences are quite small. For keyword spotting,
the results are more varied, although the jointly trained model
is again the best or very close to the best for all languages.

We also report ATWYV results of different system combi-
nations, using the hitlist combination technique [22]. Instead
of showing all 4x4 system combination results for each of the
languages, we report the results of a realistic scenario when a
monolingual system is trained first, followed by different mul-
tilingual systems. It is not surprising that combining a pure
monolingual model with a system using multilingual features
(A+B) gives 0.5-3% relative gain over the latter (B). How-
ever, adding the model with a multlingual DNN-AM to the mix
(A+B+C) results in additional 1-3% relative increase in ATWYV,
suggesting that the multilingual models with different DNN-
AMs are somewhat complementary. As the jointly trained
model is aimed to combine the benefits of multilingual and
monolingual models, adding it to the combination (A+B+C+D)
gives almost no gains over the three-way combination.

5. Conclusions

The paper explored scaling the examples for training multilin-
gual DNN models, in order to equalize the contribution of each
language. Although this approach gave a small gain in WER
on the average, there was no significant difference for most
tested languages. The paper also experimented with multilin-
gual training of the stacked DNN architecture where the first
model acts as a feature extractor and the second is used as the
acoustic model. Contrary to previous works, we port the sec-
ond DNN from the multilingual model. An ensemble training
method, where the second DNN is jointly trained from multi-
lingual and monolingual initializations, was shown to produce
consistent gains in WER over the model where only the feature
extractor is multilingual.

Although the paper experimented with stacked DNNs, the
methods of balancing language contributions and training a
DNN jointly from both monolingual and multilingual initial-
izations can also be applied to simple unstacked DNN-AMs.
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