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Abstract
Word pronunciations, consisting of phoneme sequences and
the associated syllabification and stress patterns, are vital for
both speech recognition and text-to-speech (TTS) systems.
For speech recognition phoneme sequences for words may be
learned from audio data. We train recurrent neural network
(RNN) based models to predict the syllabification and stress
pattern for such pronunciations making them usable for TTS.
We find these RNN models significantly outperform naive rule-
based models for almost all languages we tested. Further, we
find additional improvements to the stress prediction model
by using the spelling as features in addition to the phoneme
sequence. Finally, we train a single RNN model to predict
the phoneme sequence, syllabification and stress for a given
word. For several languages, this single RNN outperforms sim-
ilar models trained specifically for either phoneme sequence or
stress prediction. We report an exhaustive comparison of these
approaches for twenty languages.
Index Terms: LSTM, pronunciation, syllabification, stress

1. Introduction
Knowing how words are pronounced is an essential ingredi-
ent in any state-of-the-art automatic speech recognition (ASR)
or text-to-speech (TTS) system. For ASR, typically a man-
ually curated pronunciation dictionary is used along with a
grapheme-to-phoneme (G2P) model learned from data to cover
any missing words. In most ASR systems, pronunciations con-
sist of phoneme sequences, e.g. “foo”→ /f u/ (in the X-SAMPA
phoneset).

For high-quality speech synthesis, the phoneme sequence
also needs to have the correct syllabification and, in languages
with stress, the correct stress placement (Taylor [1]). For ex-
ample, the raw phoneme sequence of “hello” is /h E l oU/,
but including syllable boundaries (indicated throughout using
a dot) and stress information (indicated throughout using 0 for
no stress, 1 for primary stress and 2 for secondary stress) would
yield /h E 2 . l oU 1/.

2. Grapheme-to-phoneme Prediction
Knowing how words are pronounced is a challenging task, es-
pecially for irregular languages like English. Even the most so-
phisticated grapheme-to-phoneme (G2P) models only correctly
predict the pronunciation for about 80% [2] of the words. Im-
proving G2P models has been an active area of research, and
most models fall into two categories: joint-sequence n-gram
models [3, 4, 5] and sequence-to-sequence models [2]. N-gram
based translation models are usally implemented as a weighted
finite-state transducer (WFST) [6, 7]. G2P can also be ap-

proached as a sequence labeling problem using statistical tech-
niques like conditional random fields (CRF) [8, 9].

Neural network approaches [10, 11] have also been pro-
posed for G2P problems. Recurrent neural networks in par-
ticular have been shown to be effective for this sequence tran-
scription task [2]. The state-of-the-art models are hybrids: joint
n-gram models have been combined with CRF models (Wu et
al. [12]), decision trees (Hahn et al. [13]) and RNNs (Rao et
al. [2]).

Pronunciations can also be also learned directly from sam-
ple audio recordings; see e.g. Rutherford et al. [14] and Kou
et al. [15]. This approach is useful for increasing coverage in
domains with large and growing lexicons, such as geographical
entities. These audio-driven pronunciations have a higher qual-
ity than an automated G2P model, but they cannot be reused in
TTS systems without some way to to mark their syllable bound-
aries and stress placements.

Sproat et al. [16] show that models can be trained to pre-
dict stress placement given spelling, following Dou et al. [17]
who report numbers on both stand-alone stress prediction as
well as joint phoneme and stress prediction accuracy. Dou et
al. [17] report numbers over four European languages and use
the CELEX2 [18] lexicon. We instead use an internal human-
curated lexicon that has more loan words, personal names and
place names than CELEX2, since accurate performance on
those types of words is critical to our application. Place names,
for example, make up 3% of CELEX2’s Dutch lexicon, which
has about 120,000 words, but 8% of ours, which has about
435,000 words.

In the rest of this paper, we will explore using maximal-
onset syllabification and pronunciation-based stress prediction.
We will also report the accuracy of an approach using both
spelling and syllabified pronunciation as input. Finally, we will
report the accuracy of a single RNN that maps graphemes to
syllabified, stress-marked phoneme sequences.

3. Syllabification and Stress Prediction
3.1. Rule-based Syllabification

Initially, we used a rule-based syllabifier to insert syllable
boundaries into phoneme sequences using a finite-state trans-
ducer that implements maximal onset syllabification (Tay-
lor [1]). Each language has a hand-coded inventory of con-
sonants, vowels and allowed syllable onsets (Taylor [19]).
The transducer accepts all sequences but has a preference
for maximally long valid onsets before each vowel, result-
ing in maximal-onset syllabification when composed with a
phoneme sequence that did not previously have syllable bound-
aries marked, e.g. a pronunciation learned from audio as de-
scribed in section 2.
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3.2. LSTM-Based Stress Prediction Given Phonemes

Given a syllabified pronunciation, we still need to determine its
stress pattern before it can be used for TTS. Initially, we used
a pattern-based approach that uses the most frequent stress pat-
tern for a given number of syllables in our human-curated lexi-
con. For example, given a sample lexicon with ten two-syllable
words, if six of them have primary stress on the first syllable,
we would assume that any two-syllable word has primary stress
on its first syllable. This is a naive, low-accuracy approach.

Having established a baseline, we decided to use a long
short-term memory (LSTM) recurrent neural network (RNN).
RNNs use self-loops to retain information from previous in-
puts, making them able to take context within a sequence into
account. An LSTM is a type of RNN that solves the vanish-
ing gradient problem and can learn long-context behavior [20].
LSTMs have been particularly effective [2] for the G2P task.
With an LSTM, the G2P task can be a sequence transcription
task that converts a word’s grapheme sequence into its phoneme
sequence.

Similarly, we can train an LSTM to add stress markers to a
syllabified pronunciation. The input sequence is the syllabified
phoneme sequence decorated with the reserved symbol 〈stress〉
wherever we want a stress marker to appear. By convention
in our system, there is a stress directly after the vowel in each
syllable. The LSTM is trained to label each 〈stress〉 symbol
with a number representing the syllable’s level of stress. For
example, primary and secondary stress are represented by 1 and
2. Symbols in other positions are labeled with E. Table 1 shows
the input and target sequence for a sample pronunciation. The
input and output symbols are encoded as one-hot vectors.

Input o 〈stress〉 . l e 〈stress〉 . o 〈stress〉
Output E 1 E E E 2 E E 2

Table 1: An example input and output from Spanish.

3.2.1. LSTM with Constraints

In some cases, the LSTM might fail to learn hard constraints
imposed by the phonotactics of the language or the conventions
of our notation. Given the input /h E 〈stress〉 . l oU 〈stress〉/
(“hello”), for example, the LSTMmight assign secondary stress
to both syllables, violating the expectations of our TTS system.
The model could make this mistake even if no training item
does.

We rectify this problem by encoding rules about the stress
patterns as a finite state transducer (FST) that includes all valid
stress patterns. We also represent the output of the LSTM
(which are the stress posteriors) as a weighted FST. We then
intersect both FSTs and pick the most probable path as the final
stress pattern. In this way, we select the valid stress pattern that
is the most probable according to the LSTM.

Several rules can be enforced at once during inference of
the LSTM. For example, we could require exactly one primary
stress to be present and disallow word-final stress if required by
the language.

Table 2 shows the effect of the single-primary-stress con-
straint in three languages. Constraints were not used for the rest
of the metrics in this paper, but we expect they would further
improve accuracy.

Language LSTM LSTM+Constraints
da dk 87.6 90.3
en us 90.9 93.5
ru ru 87.0 93.9

Table 2: Word-level accuracies for stress prediction with and
without the constraint that all words must have exactly one syl-
lable with primary stress. The test/train set split used here dif-
fers slightly from the set used in experiments below.

3.3. Spelling Features in LSTM-Based Stress Prediction

We further improve upon the accuracy of the LSTM-based
stress prediction by adding the word’s spelling as an input se-
quence parallel to the pronunciation. The LSTM now receives
a second input from a one-hot representation of the current
spelling symbol at each time step. Since this architecture de-
pends on parallel sequences being the same length, the shorter
sequence is padded at the beginning with a reserved symbol.
Table 3 shows the inputs and target sequence for a sample pro-
nunciation.

The inputs have no information about the alignment be-
tween the spelling and pronunciation sequences. Rather, the
network must learn to propagate evidence about stress from the
spelling sequence forwards or backwards in time. In languages
like Greek where stress is usually marked with vowel diacrit-
ics, for example, the network must learn an implicit alignment
model between written vowels and their corresponding stress
markers.

Spelling 〈pad〉 〈pad〉 χ ι ω τ ώ ν
Pronunciation xj o 〈stress〉 . t o 〈stress〉 n

Output E E 0 E E E 1 E

Table 3: An example data point from Greek. The written vowels
ι and ω are not aligned with the stress marker positions in the
output sequence, and due to the presence of a diphthong there
are more written vowels than stress marker positions.

4. Experimental Set-Up Across Languages
4.1. Data

The training and test data sets for each language were derived
from our internal human-curated pronunciation lexicons. For

aakkosjärjestyksen
aa 1 k . k o 0 s . j ae 2 r . j e 0 s . t y 0 k . s e 0 n

Table 4: A lexical entry in Finnish, containing a word’s spelling
followed by its phonemic transcription. Numbers represent
stress levels. Dots separate syllables.

most languages, the lexicon has loan and foreign words, includ-
ing words written in foreign alphabets. Processing and evalua-
tion do not distinguish native and foreign words or symbols.

For table 6, the lexicons were sorted by spelling, and ev-
ery tenth item was reserved for testing. The same training and
test sets were used for all tasks, with the exception of the con-
strained decoding comparison in table 2, which uses a different
train-test split.

To generate an input sequence for the grapheme-to-
phoneme models, the spelling is lowercased and split into
graphemes. The output sequence is a phoneme sequence that
can contain syllable boundaries and stress markers. The input
and ouutput sequences are padded until they are twice the length
of the input sequence.
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To derive a training item for the stress models, the pronun-
ciation undergoes two rewrites using Thrax grammars ([20]).
For the input sequence, the stress markers are removed, and the
symbol “〈stress〉” is inserted after each syllable nucleus. The
output sequence is produced by the further step of replacing all
stress markers with their corresponding stress value from the
lexical entry, then replacing all non-stress symbols with “E”.
Spelling, if used by the model, is split into individual symbols
in the same way as for the grapheme-to-phoneme model, except
it is not lowercased. All three sequences are then padded to the
same length. See table 5 for an example.

Graphemes 〈pad〉〈pad〉〈pad〉〈pad〉〈pad〉〈pad〉〈pad〉
〈pad〉〈pad〉〈pad〉 a a k k o s j ä r j e s t y k s e
n

Phonemes aa 〈stress〉 k . k o 〈stress〉 s . j ae 〈stress〉 r . j e
〈stress〉 s . t y 〈stress〉 k . s e 〈stress〉 n

Output E 1 E E E E 0 E E E E 2 E E E E 0 E E E E 0 E E E E
0 E

Table 5: An example training item in Finnish for the spelling-
aware stress model. The non-spelling-aware stress model’s se-
quences are identical except without the presence of the spelling
or the necessity for padding.

After an output sequence has been decoded, the stress
markers in the input sequence are replaced by the symbols
at their corresponding positions in the output sequence. For
example, if the LSTM maps “d i 〈stress〉 . n 〈stress〉” to
“E E 1 E E E 0”, the predicted pronunciation is “d i 1 . n er 0”.

4.2. Training

All network weights are randomly initialized in [−0.01, 0.01]
and trained with a learning rate of 0.00005 with distributed
asynchronous gradient descent using the DistBelief parameter
server [21] across 200 replicas. Training was stopped after the
best test set accuracy had not changed for at least three hours.

4.2.1. Stress and Syllabification Prediction

For models that only predict stress, we use a bidirectional
LSTM [2] whose forward and backward layers each have 128
memory cells. An input layer contains a one-hot vector encod-
ing of the current pronunciation symbol. For the spelling-aware
model, a second input sequence contains a one-hot vector en-
coding of the current spelling symbol. In both models, the input
layers are fully connected to the LSTM layers. The models are
trained using a cross-entropy loss.

4.2.2. Pronunciation, Stress and Syllabification Prediction

For models that predict pronunciations, we use 3 stacked bidi-
rectional LSTMs whose forward and backward layers each have
64 memory cells. The input layer is fully connected to the
first pair of LSTM layers. Following [2], these models are
trained with the CTC objective function [22] since the align-
ment between the input spelling and phoneme sequence is un-
known. We improve accuracy by using dropout [22], dropping
the LSTM output activations with probabilities of 0.25, 0.30
and 0.35 in stacked order from input to output.

5. Results Across Languages
5.1. Grapheme Features in Stress Prediction

In almost all languages, the stress-predicting LSTM improves
over the pattern-based baseline. The exceptions were languages
whose stress patterns were regular enough for the pattern-based
approach to work well, e.g. the first syllable is always stressed.
Adding grapheme features to the stress-predicting LSTM in-
creases word-level accuracy for all languages except Hindi,
where it makes little difference (see columns 1a and 1b in ta-
ble 6 and figure 1).

The biggest improvements were seen in languages whose
writing systems explicitly mark some or all stressed sylla-
bles, like Russian, Greek, Spanish, Italian and Portuguese. In
Greek, whose writing system most consistently marks stressed
vowels among the languages evaluated, the grapheme-aware
model makes less than 2% of the amount of errors as the non-
grapheme-aware model. Russian, Spanish, Italian and Por-
tuguese saw error rate reductions in the 50-60% range. While
accuracy in Russian is slightly lower than Sproat et al. [16]
showed, our approach does not require any language-specific
feature engineering.

5.2. Grapheme-to-pronunciation Prediction

Since stress, syllables and phonemes are all part of a pronun-
ciation, we wanted to know if predicting them jointly creates
a model with better stress-prediction abilities than even the
spelling-aware stress predictor. We also wanted to know if hav-
ing to also predict stress and syllabification causes the network
to be better at predicting phonemes, similarly to work done for
non-RNN approaches described by e.g. Dou et al. [17]. The
answer to both questions is that it depends on the language.

When used as a stress predictor (table 6 column 1c),
the grapheme-to-pronunciation LSTM outperforms this paper’s
best stress-only model (column 1b) for Spanish, Italian, Turk-
ish and Ukrainian. The rest of the languages got worse, with
Hindi and English regressing the most. We hypothesize that
the amount of improvement correlates with orthographic trans-
parency and that facts about a language’s writing system and
phonotactics can create a state of affairs where learning to pre-
dict phonemes creates intermediate representations that are use-
ful for stress and syllable prediction, but hard for the stress-only
architecture to learn.

When used as a phoneme predictor (column 2b or figure 2),
the grapheme-to-pronunciation LSTM outperforms the same ar-
chitecture trained only on phoneme sequences for all languages
except Greek (where it stays the same), Czech, Finnish, Hindi
and Ukrainian. This time the set of languages that were im-
proved includes both ends of the orthrographic transparency
spectrum from English to Spanish.

Column 3 reports the joint grapheme-to-pronnunciation
model’s accuracy. For comparison to an existing task, we ran
the same model and evaluation process on syllabified, stress-
marked CELEX2 Dutch data, which has 106,495 usable train-
ing items and 12,141 usable test items. The word-level accuracy
was 82.2%, compared to the 65.7% when using our data set.

6. Conclusions
We showed that RNNs are capable of predicting stress place-
ment accurately for large test sets across twenty languages,
containing words commonly used in industry applications of
speech systems, e.g. personal names and geographical names
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Language Training items Test items 0. Training set
accuracy for
pattern-based
stress

1a. Stress
LSTM given
phonemes

1b. Stress
LSTM given
phonemes and
graphemes

1c. Implicit
stress model in
LSTM-G2P

2a. LSTM
that predicts
phonemes only

2b. Implicit
phoneme model
in LSTM-G2P

3. LSTM-G2P

cs cz 82,434 9,161 99.9 100 100 98.3 90.1 89.9 89.6
da dk 230,487 25,627 58.7 89.7 90.9 84.8 60.8 63.9 58.7
de de 618,740 68,757 83.5 88.9 91.2 88.3 79.4 81.0 73.8
el gr 106,221 11,806 45.8 65.2 99.6 98.1 97.2 97.2 96.8
en gb 340,265 37,814 88.3 90.8 93.1 75.1 61.9 64.2 59.5
en us 619,716 69,220 74.6 88 89.8 68.4 50.8 53.2 48.4
es es 410,180 45,575 69.1 79.5 88.6 95.5 75.0 77.3 76.7
es us 390,305 43,371 70.8 84.0 91.3 95.7 76.8 78.5 77.6
fi fi 97,935 10,877 52.4 95.8 96.4 96.3 93.9 93.6 91.6
hi in 98,755 10,975 74.9 87.6 87.3 72.2 60.3 59.7 49.7
hu hu 112,643 12,514 99.9 99.8 99.8 98.0 90.4 91.0 88.9
it it 796,603 88,552 76.7 92.6 95.9 97.2 82.1 85.0 84.6
nb no 122,836 13,646 41.8 73.2 76.0 71.9 58.4 69.0 54.7
nl nl 391,476 43,506 72.8 81.7 84.4 82.7 74.1 75.8 65.7
pl pl 229,353 25,484 98.0 97.3 97.8 96.5 92.2 92.5 91.0
pt br 207,782 25,043 71.1 89.0 94.0 86.3 75.6 76.5 72.9
ru ru 1,669,183 185,686 45.3 87.4 93.6 85.0 76.3 79.4 73.3
sv se 144,705 16,085 45.0 80.9 84.9 82.1 72.3 74.1 66.4
tr tr 94,866 10,541 68.4 80.6 84.1 88.2 89.0 89.4 80.8
uk ua 95,735 10,648 55.0 70.0 73.2 83.0 98.5 98.1 80.7

Table 6: Corpus sizes and word-level accuracies as percentages. Column 0 is the pattern-based model’s accuracy on its training set.
Columns 1a and 1b report the word-level accuracies of the spelling-unaware and spelling-aware stress-predicting LSTMs. Column
1c reports the accuracy of the grapheme-to-pronunciation LSTM when used as a stress predictor. Columns 2a and 2b compare the
accuracies of the grapheme-to-pronunciation LSTM with and without the removal of stress and syllable information from the corpus.
Column 3 reports the full accuracy of the grapheme-to-pronunciation LSTM. Columns are comparable if they are not separated by a
double vertical line.
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Figure 1: Stress model accuracies for selected languages.

in addition to regular words. These RNNs did not require any
language-specific tuning. In almost all languages, using both
graphemes and phonemes as input to the stress prediction mod-
els improves accuracy over using graphemes alone. In some
languages, further gains were achieved by using the implicit
stress models learned when training RNNs to jointly predict
phoneme sequences, syllabification and stress.
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Figure 2: Phoneme model accuracies for selected languages.
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