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Abstract
This paper explores using a summary of past speaker behav-
ior to better predict turn transitions. We computed two types
of summary features that represent the current speaker’s past
turn-taking behavior: relative turn length and relative floor con-
trol. Relative turn length measures the current turn length so far
(in time and words) relative to the speaker’s average turn length.
Relative floor control measures the speaker’s control of the con-
versation floor (in time and words) relative to the total conver-
sation length. The features are recomputed for each dialog act
based on past turns of the speaker within the current conversa-
tion. Using the switchboard corpus, we trained two models to
predict turn transitions: one with just local features (e.g., cur-
rent speech act, previous speech act) and one that added the
summary features. Our results shows that using the summary
features improve turn transitions prediction.
Index Terms: turn taking, conversation, speaker transition

1. Introduction
Turn management is an important component of everyday con-
versations. Studies on turn management in human to human
conversation [1, 2] suggest that, to minimize gaps between turns
and speaker overlap, listeners anticipate turn transitions. To an-
ticipate transitions, conversants are believed to mainly use fea-
tures that are derived from the last few utterances of the speaker:
syntactic [1, 3], prosodic [4, 5, 6], and pragmatic [7]. To better
engage in conversation with humans, turn management compo-
nents of spoken dialogue systems (SDS) have also evolved from
using simple thresholds on the silent time to training machine
learning models [8] on local features (syntactic and prosodic).

While most of the current work suggests that listeners use
features derived locally from the speaker’s current utterance,
this paper investigates whether features representing a summary
of past speaker behavior can help. The suggested features are
computed over multiple past turns of the current speaker. The
features measure the relative turn length of the current turn and
the relative floor control of the current speaker. We believe that
the summary features represent an evolving model of the other
conversant. For example, speakers who typically use long turns
will likely use long turns in the future. Moreover, speakers with
more control of the conversation floor will be less likely to yield
the turn. As the conversational image of the speaker evolves
with the conversation, the other conversant might adjust their
turn taking behavior in response.

To test the effectiveness of the summary features, we used
the NXT version of the Switchboard corpus [9, 10] to train
random forest models [11]. We created two baseline models
that only use local features: current dialog act, and current and
previous dialog acts. We also trained a model on the sum-
mary features as well as a model that included both the local

and the summary features. Our results show that using only
the summary features improves prediction performance against
the model that includes only the last dialog act, in both the
area under the curve (AUC), 0.65 vs 0.63, and F1, 66.42% vs
54.97%. In addition, the model trained on all of the features
(summary and local features) performed better than the local
features model in both AUC, 0.82 vs 0.79, and F1, 74.87% vs
74.08%. The results show that using the summary features can
help predict turn transitions.

The paper is organized as follows: Section 2 presents re-
lated work. Section 3 introduces the local and summary fea-
tures. Section 4 describes the experiment. Section 5 shows
the results obtained by training random forest models with and
without the summary features. Finally, in Section 6 we present
our conclusion.

2. Related Work
This section covers the related work in both human-human
conversations (conversation analysis and psycholinguistics) and
human-machine conversations (spoken dialogue systems).

2.1. Human-Human Conversations

Duncan [12] argued that speakers signal when they want the
listener to take the turn and presented six signals used by the
speaker to accomplish this: intonation, drawl on the final sylla-
ble, body motion, sociocentric sequence, drop in pitch or loud-
ness, and syntax. Kendon [13] added gaze as a signal to turn
transition. Our summary features complement the set of signals
as suggested by [12].

Turn allocation was introduced in the seminal work by
Sacks, Schegloff, and Jefferson [1], who observed that conver-
sations are “one speaker at a time” and gaps between turns as
well as speaker overlaps are kept to a minimum. To satisfy these
constraints, Sacks et al. suggested an ordered set of rules for
turn allocation: (a) current speaker selects the next conversant;
(b) if the current speaker did not select, any of the listeners can
self select; or (c) if neither of the previous two cases apply, the
current speaker continues. For the first rule, Sacks et al. sug-
gested that the current speaker uses adjacency pairs as the main
apparatus for selecting the next speaker. Hence, we recognized
the importance of dialog acts in turn allocation and chose them
as the atomic turn components. In addition, our work might im-
pact the second rule, in which the conversant self selects. While
Sacks et al. suggested that the first starter is the next speaker,
we suggest that a conversant might use the conversational im-
age of the speaker and of themselves when self selecting. For
example, a controlling speaker (with a high relative floor con-
trol score) has a better chance to gain control of the conversation
floor when self selecting. The work on turn bidding is also re-
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lated [14], which suggested that each conversant measures the
importance of their utterance when negotiating the right to the
conversation floor.

In addition to the turn allocation system, Sacks et al. also
suggested that turn construction units (TCU) should support
projection of turn ends by the participants. The projectability
attribute was later extended to other features of the speaker’s ut-
terance: (syntactic [1], prosodic [4] and pragmatic [4, 7]). Our
work augments the local utterance features with summary fea-
tures that can be used to improve projectablity.

Entrainment was presented in [15], which suggested en-
trainment of endogenous oscillators in the brains of the speaker
and the listener on the basis of the speaker syllabus produc-
tion. In their study, the speaker and the listener are counter
phased such that speech overlaps and gaps are minimized. Al-
though our work does not imply cyclic synchronization between
speaker and listener, we do suggest that each conversant creates
a conversation image of the other conversant and uses it during
turn transition.

The importance of using dialog acts was emphasized by a
very recent study of Garrod and Pickering [16]. The study sug-
gested that turn production is a multi-stage process in which the
listener performs simultaneous comprehension of the existing
turn as well as production of the new turn content. They sug-
gested that the first step in the process is dialog act recognition,
which is done as soon as possible and acts as the basis for the
listener’s turn articulation and production. In our study we use
dialog act as the main turn component.

2.2. Human-Computer Conversations

As recent advances in machine learning [17] reduce speech
recognition error rates, the problem of turn taking in SDS rises
in importance. Traditional SDS systems use a simple silence
timeout approach to trigger turn transitions. This creates three
issues [18]: first, the model might not be robust enough in a
noisy environment (for example when driving); second, if the
timeout is too short, the system might detect intra turn pauses
(for example, the user pausing to think) as a turn transition and
will cut into user’s turn; and third, if the timeout is too long the
system will wait too long to take the turn, resulting in large gaps
between turns.

Recent studies tried to improve over the simple threshold
model by using machine learning to train models based on fea-
tures derived from the last utterance. As different studies use
a variety of features, we will outline those that used counting
features that are close to the summary features.

Arsikere et al. [19] focus on utterance segmentation in the
context of incremental dialog system. Using the switchboard
corpus, they used a decision tree algorithm to decide if a word is
utterance final using various features and in particular the num-
ber of words in the turn so far. The usage of count features
improves precision by 10% but has very low recall (7%), which
might have occurred, according to the author, from turns with
only one word.

Gravano and Hirschberg [8] used the Columbia games cor-
pus in order to study the effectiveness of different turn transition
cues. The authors define inter pausal units (IPU) as a maximum
sequence of words surrounded by silence of more than 50 ms. A
turn is the longest sequence of IPUs by the same speaker. One of
the features studied is IPU duration in ms as well as number of
words. As in our findings, the authors found that long IPUs are
a good indication of upcoming turn changes (long IPUs might
correlate with a speaker passing its average turn length). More-

over, as we show in Section 5, the authors found that combining
multiple cues leads to better accuracy.

Raux and Eskenazi [20] performed a comprehensive study
on features that inform turn changes. The study found that tim-
ing features, like turn duration and number of pauses, have rel-
atively strong predictive power. While Raux and Eskenazi use
features of the current turn, in our study we use the timing fea-
tures for the turns that have occurred so far in the current con-
versation.

In more recent study, Nishitha and Rodney [21] used a
model based on N grams of dialog acts to predict turn transi-
tions. They trained a decision tree model using the switchboard
data and tested bigram, trigram and 4 grams models of dialog
acts with and without speaker id. They achieved an F1 measure
of 0.67 for the trigram model. In this paper we based our base-
line models on bigrams and trigrams of dialog acts. We also
mapped the switchboard dialog acts from 148 dialog acts down
to 9 in order to reduce data dimensionality. The prediction per-
formance of our baseline model is comparable to their results.

3. Local and Summary Features
This section defines the local and summary features. The local
features are based on pragmatics and consist of the current and
previous dialog acts. The summary features are based on mea-
surements of each speaker’s behavior over over the preceding
turns in the dialogue.

3.1. Local Features

We define a conversation as a sequence of dialogue acts
d1 . . . dN , where di is uttered by speaker si. We write this as
the following sequence:

. . . si−2, di−2, si−1, di−1, si, di . . . (1)

We denote whether there was a turn transition with yi. A turn
transition occurs when the speaker si is different from speaker
si−1. Hence, (1) can be also be viewed as a sequence of dialog
acts di followed by turn transitions yi:

. . . di−2, yi−1, di−1, yi, di, yi+1 . . . (2)

In our first baseline model, we try to predict the turn transition
value yi+1 based only on the latest dialog act di. In our second
baseline model, we try to predict turn transition yi+1 based on
the latest two dialog acts: di−1 and di.

3.2. Summary Features

As discussed in the introduction, we introduce two types of
summary features in this paper: relative turn length (rti) and
relative floor control (rci). These features are used in predict-
ing whether there is a change in speaker yi+1 after dialogue act
di.

To compute the summary features, at dialogue act di, we
denote Si to be the set of complete turns of speaker si that are
prior to the turn that di is in. Let ti represent the turn so far that
di is in, up to di but no subsequent dialogue acts. Let length(t)
be the length of a turn or a partial turn in seconds (or words).
To compute the relative turn length of turn ti we first compute
the average length of all the turns in Si

avg ti =

∑
t∈Si

length(t)

|Si|
(3)
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The relative turn length summary feature of ti, denoted as rti,
measures the percent of the length of the turn ti so far, relative
to the average turn length up to ti of the current speaker si (but
not including ti).

rti =
length(ti)

avg ti
(4)

Note that we calculate two versions of rti: in seconds and in
words. The purpose of rti is to let the listener, in predicting
turn changes, take into account whether the current speaker is
exceeding his or her average turn length.

The relative floor control, denoted as rci, measures the per-
cent of time in which the current speaker controlled the con-
versation floor up to di. We again define Si as above, and we
define Li to be the turns of the other conversant (the listener of
di). We first compute the conversation length up to di denoted
as ci which excludes inter-utterance pauses.

ci =
∑

t∈Si∪Li

length(t) (5)

To compute relative floor control at di, we divide the floor time
of the speaker si up to turn ti by ci:

rci =

∑
t∈Si

length(t)

ci
(6)

Note that we calculate rci in seconds and in words. Participants
can use the relative floor control as a means to determine if one
speaker is controlling the conversation - a controlling speaker
will probably be less inclined to give up the floor.

We use these two summary features in the summary model
and full model, as described in the next section.

4. Evaluation
Figure 1 shows the experiment data pipeline. Data is imported
from the NXT switchboard corpus [9] into a graph database
[22]. Figure 2 shows the data structure as it is represented in-
side the graph database. For each conversation, the conversation
entities (words, dialog acts and turns) are represented as edges
between time points, which are represented as vertices. The
structure leads to a direct computation of the summary features
using the graph query language.

Figure 1: The experiment data pipeline

After computing the summary features, we perform the fol-
lowing data transformation:

Figure 2: Conversation graph data model

Switchboard
dialog acts

Dialog act classes

sd,h,bf statement
sv,ad,sv@ statement - opinion
aa,aar̂ agree accept
%.%-,%@ abandon
b,bh backchannel
qy,qo,qh question
no,ny,ng,arp answer
+ +
o@,+@ NA

Table 1: Mapping from dialog act to dialog act class

• We exclude 11 dialogue acts that were coded in Switchboard
as “other”.

• Since we believe that it takes a certain amount of time to build
a stable conversational image, in evaluating our model, we
removed all turns that occurred in the first part of each con-
versation. For this paper, we used an estimate of 120 sec-
onds. This reduced the number of dialog acts from 50,633 to
37,508.

• To reduce data sparsity, we grouped switchboard dialog acts
into dialog act classes. This reduced the number of dialog
acts from 148 to 9 dialog act classes. See Table 1 for exam-
ples of the mapping.

• We added a binary yi+1 feature to each dialog act. As ex-
plained in Section 3, the variable is 1 if there is a turn change
from dialogue act di to di+1.

To test the contribution of the summary features, we used
a binary classifier with yi as the outcome variable. We trained
four models, which used the following sets of features:

baseline 1: Predict turn transition based only on the current di-
alog act label.

baseline 2: Predict turn transition based on the labels of the
current and previous dialog acts.

summary model: Predict turn transition using just the sum-
mary features.

full model: Predict turn transition using the summary features
and the current and previous dialog acts.

We used random forests to build the binary classifiers (N =
200) [23]. Random forests build an ensemble of decision trees
during training, and during testing, each decision tree votes on
the outcome. Like decision trees, it can account for interactions
between variables, such as making greater use of the summary
features when the current speech act is not a question. Ran-
dom forests though are not as sensitive to overfitting and data
fragmentation.
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To find the optimal hyper parameters, we ran a grid search
over the max features and max depth hyper parameters for
each model. The hyper parameters search was done over
{sqrt, log2, 10} for max features and {5, 7, 9} for max depth.
When training the model, we used the optimal hyper parameters
for each feature set.

We performed 10 fold labeled cross validations. We made
sure that each conversation was entirely in a single fold. This
way, each dialogue was entirely used for training or testing, but
never for both at the same time.

5. Results and Discussion
We first analyze the results in terms of accuracy: how often the
models correctly predicted whether a turn transition occurred
or not, in other words, how often it predicts the correct value of
yi+1. Table 2 shows the results of training a random forest for
each model. We see that using the summary features provides
better accuracy than baseline 1, which only uses the current cur-
rent dialog act (66.14% vs 60.26%). In addition, using the full
model yields an improvement of over 1.58% in the result.

Model Accuracy AUC hyper parameters
Baseline 1 60.26% 0.63 max features=sqrt, max depth=7
Baseline 2 74.43% 0.79 max features=log2, max depth=9
Summary 66.14% 0.65 max features=sqrt, max depth=5
Full 76.05% 0.82 max features=10, max depth=9

Table 2: Accuracy and AUC results

The effect can also be seen in Figure 3, which shows the
ROC curves and the AUC for each model. We notice that the
AUC of the summary model is better than baseline model (0.65
vs 0.63), and when adding the summary features to the local
features, the full model, we see the AUC improves (0.82 vs
0.79). This suggests that while the discrimination facility of
the summary features is lacking (AUC < 0.7), adding them
to a classifier that uses local features (full model) yields better
results than the baseline.
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Figure 3: ROC curves and AUC of the different models

In addition to analyzing the results in terms of accuracy, we
also analyze the results of the four models in terms of how well
we predict that there is a change in speaker (i.e., yi+1 indicates
that there was a turn switch). Table 3 shows the results in terms
of recall, precision, and F1, which combines the two scores.
Although baseline 1 has high precision, it has very low recall.
Using only the summary model improves recall and decreases

precision by less, leading to a higher F1 score and overall better
performance. Using the full model improves precision, which
means that dialog acts that were considered to lead to turn tran-
sitions are classified correctly. If we use the full model, we lose
precision (over baseline 2 model), but gain recall, leading to the
highest F1 score and the best performance.

Model Precision Recall F1
Baseline 1 69.49% 45.52% 54.97%
Baseline 2 80.38% 68.80% 74.08%
Summary 64.55% 68.88% 66.42%
Full 76.17% 77.25% 74.87%

Table 3: Precision, recall and F1 results

6. Conclusions and Future Work
This paper explores the use of features that capture speakers’
past turn-taking behavior in predicting whether their will be a
turn transition. These summary features include (a) relative turn
length: how the current turn under construction compares to the
current speaker’s average turn length; and (b) relative floor con-
trol: the percentage of time that the current speaker has held
the floor. We include two versions of each, one based on time,
and one based on number of words. Relative turn length should
capture whether one or both of the speakers tends to hold the
turn over multiple utterances, while relative floor control cap-
tures whether one speaker is dominating the conversation. Both
of these factors should influence who will speak next.

In evaluating our model on data from the Switchboard cor-
pus, we find that our summary features on their own do better
than just using the previous speech act (accuracy of 66.14%
vs 60.26%). We also find that when we add these features to a
model that uses the last two speech acts, we also see an improve-
ment (76.05% vs 74.43%). These results show the potential of
modeling speakers’ past turn-taking behavior in predicting up-
coming turn-transitions. Better modeling of turn-taking should
lead to more natural and efficient spoken dialogue systems.

In this work, the local features that we considered in our
baseline model were just the last two speech acts. Other work
on turn-taking prediction use a richer set of local features, such
as syntactic [12, 1, 4, 3, 24, 19], prosodic [12, 4, 25, 6, 3, 26,
20, 27, 19], pragmatic [4, 16, 20], semantic [20] and non verbal
[13]. In future work, it would be good to evaluate the contribu-
tion of our summary features with a richer set of local features.

In our work, we evaluated our model on the Switchboard
corpus. In future work, it would also be good to evaluate our
summary features on other corpora, especially task-based dia-
logues. Tasks in which there is a difference in the role of the
user and speaker, such as in Trains [28], should benefit from
modeling the past turn-taking behavior of each speaker.

More generally, the summary features introduced in this
work represent just one aspect of the conversational image of
the user. Future work should try to “summarize” other local
features by creating the average value of a local feature over
past turns. For example, we can compute relative speech rate,
or relative use of stereotyped expressions.
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