
Robust Estimation of Fundamental Frequency using Single Frequency
Filtering Approach

Vishala Pannala1, G. Aneeja2, Sudarsana Reddy Kadiri3, and B.Yegnanarayana4

Speech and Vision Laboratory,
International Institute of Information Technology, Hyderabad, India

{1p.vishala,2aneeja.g,3sudarsanareddy.kadiri}@research.iiit.ac.in,4yegna@iiit.ac.in

Abstract
A new method for robust estimation of fundamental frequency
(F0) from speech signal is proposed in this paper. The method
exploits the high SNR regions of speech in time and frequency
domains in the outputs of single frequency filtering (SFF) of
speech signal. The high resolution in the frequency domain
brings out the harmonic characteristics of speech clearly. The
harmonic spacing in the high SNR regions of spectrum deter-
mine the F0. The concept of root cepstrum is used to reduce the
effects of vocal tract resonances in the F0 estimation. The pro-
posed method is evaluated for clean speech and noisy speech
simulated for 15 different degradations at different noise lev-
els. Performance of the proposed method is compared with four
other standard methods of F0 extraction. From the results it is
evident that the proposed method is robust for most types of
degradations.
Index Terms: Fundamental frequency, Single frequency filter-
ing, High SNR regions, Harmonics, Root cepstrum.

1. Introduction
Estimation of the fundamental frequency (F0), i.e., the fre-
quency of vibration of the vocal folds, is essential in many
speech processing applications such as synthesis and recogni-
tion. Methods for estimation of F0 involve either time domain
or frequency domain or both. In time domain methods, the lo-
cation of the peak in the correlation sequence computed from a
segment of the speech signal or some derived signal (such as lin-
ear prediction residual) is estimated [1]. For example, in simpli-
fied inverse filter tracking (SIFT) algorithm [2], F0 is estimated
using autocorrelation function of the excitation signal (obtained
from inverse filtering of voiced speech). Cepstral-based meth-
ods [3, 4] separate the excitation source and vocal tract system
in cepstral domain using homomorphic transformation, and F0

is estimated as the interval to the first dominant peak in the cep-
strum (related to excitation signal). Methods such as robust al-
gorithm for pitch tracking (RAPT) [5], yet another algorithm for
pitch tracking (YAAPT) [6], Praat [7], estimate F0 by extracting
local maxima of the autocorrelation or crosscorrelation function
[8]. Several modifications to the autocorrelation-based meth-
ods were carried out to prevent errors in the estimated F0 as in
the YIN algorithm [9]. Frequency domain methods rely on the
presence of strong harmonic peaks to estimate F0 [10]. Exam-
ples of this kind are sub-harmonics to harmonics ratio (SHRP)
[11], summation of residual harmonics [12], dominant harmon-
ics [13], sawtooth waveform inspired pitch estimator (SWIPE)
[14], etc. Also, some approaches [15, 16] combine various tech-
niques of F0 estimation (e.g., [15] combines harmonic ratios
and cepstral analysis) for robustness under degraded conditions.

Typically, in time-frequency domain pitch extraction al-
gorithms, the speech signal is decomposed into multiple fre-
quency bands, and time domain methods are applied on each
subband signal. A popular time-frequency domain method is
the auditory-model correlogram based algorithm [17]. In this,
decomposition is performed using an auditory filter bank, fol-
lowed by autocorrelation computation on each subband signal.
In [18], multi band summary correlogram (MBSC) based pitch
detection is proposed, where it uses four wide band FIR filters to
capture multiple harmonics in every subband. Different weight-
ing schemes are used to obtain a peak enhanced summary cor-
relogram for robust F0 estimation.

Some methods [19] use data driven approaches to learn how
noise effects the amplitude and location of the peaks in the spec-
tra of speech. In this, the likelihoods of the F0 candidates are
obtained by evaluating the peaks in the spectra using the corre-
sponding models learned from different bands. Also, methods
in [20, 21, 22, 23] use statistical approaches to improve F0 es-
timation.

There are a few methods which attempt to estimate the glot-
tal closure instants (GCIs), from which the periodicity of the
glottal vibration is obtained [1]. In this, the impulse-like nature
of excitation (epochs/GCIs) in the sequence of glottal cycles
is exploited to derive the instantaneous fundamental frequency
from the speech signal directly.

Factors that affect the performance of these methods are:
(a) The quasi-periodicity of the waveform
(b) Effect of resonances of the vocal tract
(c) Rapid variation of F0

(d) Degradations due to environmental factors like noise and
reverberation

(e) Artifacts of digital processing such as block processing,
windowing and all-pole modeling

In addition, there are many speech sounds where the glottal vi-
bration is inherently aperiodic like in creaky voices and in some
expressive voices (Noh voices) [24, 25].

In this paper, we propose a method for estimating F0, based
on deriving the time envelopes of speech signal at each fre-
quency using single frequency filtering (SFF) [26]. The single
frequency filtering output of the speech signal gives spectra with
high frequency resolution, although there will be some smear-
ing in the time domain. The peaks at the harmonic frequen-
cies are sharp. Also, the SFF output has regions of high SNR
in time and frequency domains. These features are exploited
for developing a method for F0 extraction that is robust against
degradations.

The paper is organized as follows: Section 2 gives a brief
overview of the SFF approach for processing speech signals
to obtain spectra at every sampling instant. Section 3 dis-
cusses the proposed method forF0 extraction using the instanta-
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neous spectra. Section 4 gives the performance of the proposed
method under various types of degraded speech conditions, in
comparison with the performance of some standard F0 extrac-
tion methods. Section 5 gives a summary of the paper.

2. Single Frequency Filtering (SFF) of
Speech Signal

In the SFF approach, the envelope of the signal is obtained
at any desired frequency. The speech signal is shifted in fre-
quency by multiplying with a complex sinusoid, and the fre-
quency shifted signal is filtered by a single pole filter, with the
pole located close to the unit circle (i.e., radius r > 0.99) at
fs/2, where fs is the sampling frequency. The following are
the steps involved in deriving the SFF envelopes [26].

(a) The input speech signal x(n) is multiplied with ejω̂kn to
obtain a frequency shifted x(n). That is

xk(n) = x(n)ejω̂kn, (1)

where ω̂k = 2π
fs
f̂k

(b) Pass the signal xk(n) through a single pole filter, with the
pole located at z = −r ≈ −1 in the z-plane. The transfer
function of single frequency filter is given by:

H(z) =
1

1 + rz−1
(2)

The corresponding filtered signal is given by
yk(n) = −ryk(n− 1) + xk(n) (3)

In this study, r value is chosen as 0.995.
(c) The envelope vk(n) of yk(n) is given by

vk(n) =
√
y2
kr(n) + y2

ki(n), (4)

where ykr(n) and yki(n) are the real and imaginary parts
of yk(n), respectively.

(d) The desired frequency fk is related to f̂k as follows:

ωk =
2πfk
fs

= π − 2πf̂k
fs

(5)

The envelope vk(n) can be computed at any frequency fk.
In this study, we have chosen frequencies between 0−fs/2
with ∆f = 10 Hz intervals. That is

fk = k ∆f, k = 0, 1, 2, . . . , N, (6)

whereN = fs/2
∆f

. The vk(n) for different values of k gives
the spectrum at the sampling instant n, and hence it is called
the instantaneous spectrum. In this paper, sampling fre-
quency is 8 kHz and ∆f = 10 Hz. Thus we obtain 400
envelopes within 4000 Hz.

3. F0 Extraction from Instantaneous
Spectra

The instantaneous spectra plotted at each sampling instant for
a 4 ms segment of voiced speech are shown in Fig. 1. Each
instantaneous spectrum shows harmonic structure clearly, even
in the high frequency regions (as shown in Fig. 3(a) at one
sampling instant). The sum of all the values over frequency is
considered as energy E(n), and it is plotted as a function of
time. That is,

E(n) =

N∑
k=0

vk(n) (7)

Fig. 2(b) shows the energy as a function of time plotted for the
segment of voiced speech shown in Fig. 2(a). For the signal
over a frame size of 10 ms, the instant at which the instan-
taneous spectrum has maximum of energy is chosen. The F0

computed from the spectrum at that instant is assigned to that
10 ms frame. It is easier to extract the periodicity information
present in terms of harmonics as representation, as the harmon-
ics are highlighted better in SFF spectrum than DFT spectrum.
Note that, in DFT spectrum the components at different frquen-
cies are obtained by projecting the signal segments on the basis
funcitons, where as in the SFF method, the components are ob-
tained by filtering the signal at each frequency.
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Figure 1: Instantaneous spectra at each sample for a segment of
voiced speech.
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Figure 2: Energy contour for a segment of voiced speech. (a) A
segment of voiced speech, and (b) its energy at each sampling
instant.

The F0 is computed using the IDFT of the instantaneous
spectrum (vk(n) as a function of k). The IDFT of vk(n) may
be considered as the root cepstrum (cm(n)) [27], as the spec-
tral values correspond to the values of the envelopes at different
frequencies, and not the square of the envelope values. The
components corresponding to the spectral envelope (i.e., corre-
sponding to the response of the vocal tract) appear in the low
time values of the root cepstrum. The harmonic structure in
the spectrum is reflected as the peak in the root cepstrum at the
location of the pitch period.

Fig. 3(a) shows the SFF spectrum vk(n) and the corre-
sponding root cepstrum (cm(n)) is shown in Fig. 3(b). The
initial few values in the cepstrum typically represent the vo-
cal tract information. The large peaks present after these initial
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Figure 3: (a) Instantaneous spectrum vk(n), and (b) Root cep-
strum cm(n) of (a).

values represent the excitation information. The location of the
peak in the cepstrum in the range of 2.5−20ms (corresponding
to 20−160 samples), is considered as the estimated pitch period
for that frame. The inverse of T0 gives F0. The choice of the in-
terval is made assuming the range of F0 from 50Hz to 400Hz.
A 5-point median filtering is applied as post-processing for the
predicted F0. The proposed method is further referred to as
SFF CEP. Note that this method is different from normal cep-
stral based method which uses DFT to obtain the components
at different frequencies.

Fig. 4 illustrates the derived F0 contours in comparison
with ground truth for clean as well as for degraded cases of
speech. The clean speech signal and the signal degraded by
factory1 noise at 0 dB are shown in Figs. 4(a) and 4(b), re-
spectively. The ground truth of F0 for this case is shown in Fig.
4(c). The F0 contour for the clean speech derived by the pro-
posed SFF CEP method is shown in Fig. 4(d). The F0 contour
in Fig. 4(d) matches well with the one in Fig. 4(c). Figs. 4(e),
4(f) and 4(g) show the F0 contours for the degraded speech in
Fig. 4(b) derived using the SFF CEP method as well by SWIPE
and YIN methods. The F0 contour in Fig. 4(e) is much closer
to the ground truth (Fig. 4(c)), compared to the F0 contours
obtained by SWIPE and YIN methods shown in Figs. 4(f) and
4(g), respectively.

4. Performance Evaluation
In this section, performance of the proposed method of F0 es-
timation is evaluated for clean speech signals and for noisy
speech signals for various degradations at levels of 0 dB and
10 dB. The Keele database [28] along with its reference pitch
frequency information is used. The database consists of five
male and five female speakers, each speaking for about 35 s du-
ration. All the signals are resampled to 8 kHz. The reference
pitch frequency for every 10ms is obtained from the simultane-
ously recorded electroglottograph (EGG) signal, and is used as
ground truth. In the ground truth, the unvoiced frames and un-
certain frames are considered as nonvoiced frames. The uncer-
tain frames are the frames with mismatch between the manual
marking and the EGG signal.

Degraded data is simulated by adding noises from NOISEX
database at levels of 0 dB and 10 dB to the clean speech data
from Keele database. All the 15 noises from NOISEX database
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Figure 4: F0 contour comparison. (a) A segment of clean
speech signal. (b) A segment of speech signal simulated with
factory1 degradation at 0 dB. (c) Ground truth F0 contour. (d)
SFF CEP F0 contour of (a). (e) SFF CEP F0 contour of (b). (f)
SWIPE F0 contour of (b), and (g) YIN F0 contour of (b).

are considered here.
The accuracy of the derived F0 is measured in terms of 3

parameters [1], namely,
• Gross pitch error (GPE): The percentage of voiced

frames of estimated F0, deviating beyond 20% from the
reference values.

• Standard pitch deviation (SPD): The standard deviation
of the absolute difference between estimated and refer-
ence F0 values.

• Mean pitch deviation (MPD): The mean of the absolute
difference between estimated and reference F0 values.

Gross pitch errors are not considered in determining SPD and
MPD.

Performance of the proposed method is compared with four
standard methods with their default parameters. The four stan-
dard methods are SWIPE [14], YIN [9], RAPT [5] and SHRP
[16]. Table 1 shows the performance comparison of various
methods in terms of GPE, obtained by averaging over all types
of degradations (excluding clean speech) at SNR levels of 0 dB
and 10 dB. From the table, it can be seen that the SFF CEP
method performs better than other methods.
Table 1: Comparison of methods in terms of gross pitch error
(GPE %) using average performances across all 15 noises, for
clean speech, at 0 dB and at 10 dB SNR cases.

Method clean 10 dB 0 dB
SFF CEP 2.533 5.194 19.736
SWIPE 2.647 7.930 28.365
YIN 5.004 12.073 37.327
RAPT 5.779 17.589 50.711
SHRP 6.993 13.577 28.980

Table 2 shows the results for clean speech data and simu-
lated degraded data at 0 dB in terms of GPE, SPD and MPD.
From Table 2, the following observations can be made. In gen-
eral, the SFF CEP and SWIPE methods perform better than
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Table 2: Performance comparison (in terms of GPE %) of vari-
ous F0 estimation methods for clean speech and for 15 types of
degraded speech at 0 dB.

Degradation Method GPE SPD MPD

clean

SFF CEP 2.533 4.981 3.808
SWIPE 2.647 2.322 1.046
YIN 5.004 3.018 1.506
RAPT 5.779 2.903 1.179
SHRP 6.993 4.126 2.293

white

SFF CEP 11.130 5.699 3.984
SWIPE 11.710 3.106 1.390
YIN 14.990 3.672 1.673
RAPT 61.227 1.858 0.547
SHRP 21.341 4.273 2.126

babble

SFF CEP 23.507 5.991 3.677
SWIPE 26.591 4.562 1.826
YIN 37.212 4.289 1.687
RAPT 43.468 4.475 1.531
SHRP 33.340 5.038 2.210

machinegun

SFF CEP 14.267 5.226 3.446
SWIPE 18.312 2.609 1.022
YIN 27.588 3.152 1.276
RAPT 25.064 3.326 1.166
SHRP 21.273 4.069 1.983

hfchannel

SFF CEP 10.539 5.714 4.011
SWIPE 5.326 3.429 1.611
YIN 13.911 3.809 1.744
RAPT 58.364 2.193 0.668
SHRP 19.061 4.495 2.266

pink

SFF CEP 19.071 5.415 3.618
SWIPE 29.807 2.754 1.084
YIN 36.759 3.128 1.197
RAPT 59.903 2.170 0.581
SHRP 29.919 4.247 1.931

volvo

SFF CEP 16.197 4.802 3.363
SWIPE 15.889 2.112 0.871
YIN 31.796 2.905 1.156
RAPT 35.601 2.578 0.834
SHRP 18.001 3.933 1.991

buccaneer1

SFF CEP 23.482 5.642 3.403
SWIPE 38.188 2.743 1.046
YIN 40.116 3.215 1.185
RAPT 63.001 2.189 0.578
SHRP 34.377 3.981 1.761

buccaneer2

SFF CEP 20.078 5.677 3.618
SWIPE 27.099 3.318 1.325
YIN 36.408 3.354 1.277
RAPT 61.199 2.367 0.617
SHRP 30.554 4.206 1.911

destroyerengine

SFF CEP 22.749 5.641 3.528
SWIPE 18.023 3.263 1.449
YIN 26.319 3.633 1.557
RAPT 35.981 4.192 1.623
SHRP 26.491 4.274 2.026

destroyerops

SFF CEP 19.512 5.620 3.668
SWIPE 28.885 4.050 1.654
YIN 42.763 3.949 1.476
RAPT 42.413 4.406 1.514
SHRP 32.995 4.611 2.009

Degradation Method GPE SPD MPD

factory1

SFF CEP 19.119 5.498 3.621
SWIPE 32.044 3.233 1.244
YIN 39.561 3.185 1.208
RAPT 55.110 2.702 0.771
SHRP 31.539 4.289 1.936

factory2

SFF CEP 21.004 5.161 3.493
SWIPE 31.388 2.702 1.024
YIN 42.949 3.041 1.111
RAPT 52.258 2.609 0.765
SHRP 28.186 4.435 2.041

f16

SFF CEP 19.120 5.586 3.738
SWIPE 37.211 2.394 0.901
YIN 42.145 3.095 1.141
RAPT 57.366 2.575 0.738
SHRP 30.230 4.380 1.990

m109

SFF CEP 29.522 4.873 3.032
SWIPE 64.638 1.752 0.475
YIN 71.422 2.118 0.556
RAPT 58.326 3.080 0.826
SHRP 40.469 3.479 1.462

leopard

SFF CEP 26.747 5.39 3.139
SWIPE 40.363 3.157 1.140
YIN 55.964 3.167 0.996
RAPT 51.385 3.908 1.202
SHRP 36.928 4.258 1.772

other methods for clean as well as degraded speech cases. The
SFF CEP method performs better than SWIPE method for clean
speech data and across 12 types of degradations. The SFF CEP
method exhibits significantly better performance (beyond 10%)
in noises such as m109, f16, leopard, factory1, factory2, pink.
At the same time, the difference between SWIPE and SFF CEP
methods is least seen (< 1%) for clean data and for data de-
graded with white noise. The difference between SWIPE and
SFF CEP methods is small in cases where the performance of
SWIPE is better than SFF CEP.

5. Summary and Conclusion
A new method for robust estimation of F0 is presented in this
paper. The method is based on deriving the envelopes of the
signal at different frequencies using SFF approach. The SFF
approach gives high SNR regions in time and frequency re-
gions due to correlation of signal samples and lack of corre-
lation of noise samples both in time as well as in the frequency
domains. This enables us to choose only the high SNR regions
for F0 estimation. Moreover, the high frequency resolution in
the spectrum due to SFF gives sharp harmonics, which help in
estimating F0. The robustness of the method is demonstrated
by considering speech affected by various degradations. The
performance of the proposed method is compared with the per-
formance of some standard methods for F0 extraction.

The advantages of SFF approach can be exploited by choos-
ing appropriate single-pole filter at fs/2 to obtain good tempo-
ral resolution of the envelopes of the signal at different frequen-
cies, but at the expense of resolution in the frequency domain.
The F0 can then be estimated from the autocorrelation sequence
computed from segments of time envelopes. The results of F0

estimation from both time and frequency domains can be com-
bined to obtain highly robust F0 estimation under several prac-
tical cases of degradations.
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