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Abstract 
Speech inversion is a well-known ill-posed problem and 
addition of speaker differences typically makes it even harder. 
This paper investigates a vocal tract length normalization 
(VTLN) technique to transform the acoustic space of different 
speakers to a target speaker space such that speaker specific 
details are minimized. The speaker normalized features are then 
used to train a feed-forward neural network based acoustic-to-
articulatory speech inversion system. The acoustic features are 
parameterized as time-contextualized mel-frequency cepstral 
coefficients and the articulatory features are represented by six 
tract-variable (TV) trajectories. Experiments are performed 
with ten speakers from the U. Wisc. X-ray microbeam database. 
Speaker dependent speech inversion systems are trained for 
each speaker as baselines to compare the performance of the 
speaker independent approach. For each target speaker, data 
from the remaining nine speakers are transformed using the 
proposed approach and the transformed features are used to 
train a speech inversion system. The performances of the 
individual systems are compared using the correlation between 
the estimated and the actual TVs on the target speaker’s test set. 
Results show that the proposed speaker normalization approach 
provides a 7% absolute improvement in correlation as 
compared to the system where speaker normalization was not 
performed.  
Index Terms: Acoustic to articulatory speech inversion, 
speaker normalization, Vocal Tract Length Normalization 

1. Introduction 
Speech inversion or acoustic-to-articulatory inversion of speech 
has been a widely researched topic in the last 40 years. Speech 
Inversion is the process of mapping the acoustic signal into 
articulatory parameters. If estimated accurately, articulatory 
information can be applied to speech accent conversion [1], 
speech therapy, language learning, and Automatic Speech 
Recognition (ASR) [2][3][4].  

Real articulatory data is obtained from subjects using 
techniques like Electromagnetic Articulometry (EMA), X-ray 
microbeam, and real-time Magnetic Resonance Imaging (rt-
MRI). However these techniques require sophisticated devices 
and are expensive and time consuming. Obtaining real 
articulatory data is not practically feasible for real world 
applications like ASR. Only the acoustic data is available from 
the speaker. Hence, it is essential to develop speech inversion 

systems that are speaker independent and can accurately 
estimate articulatory features for any unseen test speaker. 

The mapping from acoustics to articulations is known to be 
highly non-linear and non-unique [5]. Adding speaker 
variability to the already challenging problem makes it even 
more difficult. Most research in speech inversion has been 
focused on developing accurate speaker dependent systems. 
Approaches like codebook search, feedforward neural 
networks, and Mixture Density Networks have been found to 
work well for speaker dependent speech inversion. There have 
been a few attempts to perform speaker independent speech 
inversion [6][7] which have been limited to two speakers from 
the MOCHA TIMIT dataset [8]. Hueber et al. [9] presents a 
Gaussian mixture regression based speaker adaptation scheme 
for a Gaussian Mixture Model (GMM) based speech inversion 
system. However, there has not to date been any effort in 
performing speaker adaptation for artificial neural network 
based speech inversion systems. This paper presents a Vocal 
Tract Length Normalization (VTLN) based approach to speaker 
adaptation for speech inversion. VTLN is a popular speaker 
adaptation technique in ASR which has so far not been applied 
to speech inversion. 

The objective of this paper is to normalize acoustic data 
from multiple speakers towards the acoustic space of a target 
speaker. Unlike the usual adaptation of the test utterances 
towards the acoustic space of the training speaker, this approach 
aims to transform data from multiple speakers towards the 
acoustic space of a target test speaker to train a speech inversion 
system for the target speaker using the speaker normalized data. 
Diagonal covariance GMMs are trained for each speaker and a 
piecewise linear frequency warping similar to VTLN is 
performed to adapt the acoustic space of the training speakers 
towards that of the test speaker. More details of this adaptation 
procedure are provided in section 3. 

The experiments in this paper are performed on a set of 10 
speakers from the U. Wisconsin X-ray Microbeam (XRMB) 
database [10]. The articulatory features are represented by six 
tract-variable (TV) trajectories (described below). Using a 
leave-one-out methodology, separate experiments were 
performed for each speaker in which the acoustic features from 
the other 9 speakers were transformed using the VTLN 
approach. The transformed acoustic features were then used to 
train a speech inversion system. The performance of the system 
trained on VTLN adapted acoustic features was compared to the 
performance of speaker dependent systems. The performances 
of the individual systems were compared using the correlation 
between the estimated and the actual TVs on the target 
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speaker’s test set. More details of the speech inversion system 
training and the experiments are provided in sections 4 and 5.  

The results of the experiments showed that the VTLN based 
acoustic feature normalization improved the correlation score 
by 7% absolute over the case when no adaptation was 
performed. A detailed analysis of the results is presented in 
section 6.  

This novel approach to speaker normalization for speech 
inversion provides interesting insights to this problem and 
opens several avenues for future work that are discussed in 
section 7 and 8 of the paper. 

2. Dataset Description  
The XRMB dataset was used for the experiments performed in 
this paper. The dataset consists of flesh point pellet trajectories 
of along with simultaneous audio recordings of continuous 
speech utterances for 46 different speakers. We converted the 
pellet trajectories to six Tract Variables (TVs) [11] using a 
geometric transformation procedure outlined in [12]. The six 
TVs were – Lip Aperture (LA), Lip Protrusion (LP), Tongue 
Body Constriction Location (TBCL), Tongue Body 
Constriction Degree (TBCD), Tongue Tip Constriction 
Location (TTCL) and Tongue Tip Constriction Degree 
(TTCD). After discarding recordings containing mistracking 
and other errors due to conversion to TVs, the dataset consisted 
of 4 hours of speech and data from 46 speakers with unequal 
amounts of speech from each speaker. We selected 10 speakers 
from the XRMB dataset (5 males and 5 females)  such that the 
amount of data from each speaker was roughly the same (around 
6.5 to 8mins). For each speaker, we split the dataset into three 
sets – 80% for training, 10% for cross validation, and 10% for 
testing. All our experiments were performed using the data from 
these ten speakers. 

3. Vocal tract length normalization 
approach 

Any speaker adaptation scheme requires an acoustic model that 
approximates the acoustic space of the target speaker. We 
modeled the acoustic space of each speaker using unsupervised 
Gaussian Mixture Models. The acoustic features for the GMMs 
were 13 dimensional MFCCs computed with an analysis 
window of 20ms and a frame rate of 10ms, along with slope and 
accelerations. We trained 64 Gaussian components in an 
unsupervised manner on the 39 dimensional MFCC features. 
The diagonal covariance GMMs were trained iteratively by 
increasing the number of Gaussians from 2 to 64 by doubling 
the number of components in each stage. The GMM training 
routines were obtained from the MSR Identity Toolbox v1.0 
[13]. Thus, such GMMs were trained for each of the 10 speakers 
chosen for the experiment. 

3.1. Maximum likelihood approach to VTLN 
frequency warping 
Vocal Tract Length Normalization (VTLN) aims to compensate 
for the effects of different vocal tract lengths by warping the 
frequency spectrum in the filterbank analysis before the 
computation of the cepstral coefficients. This warping was 
implemented by a simple piecewise linear warping function as 
shown in Figure 1. The warping factor α determines the nature 
of the warping function. The warping is implemented between 
the lower boundary of frequency analysis (LOFREQ) and the 

upper boundary of frequency analysis (HIFREQ). In order to 
adapt the acoustic features of speaker Si to speaker Sj, a single 
warping factor αij is used for all utterances from speaker Si. The 
warping factor αij is determined by a maximum likelihood 
approach as outlined below. 

 
Figure 1: Frequency warping function implemented in HTK 

toolkit [14] 
 

Let the GMM acoustic model for speaker Sj be λj, and the 
warped acoustic features for a signal frame of speaker Si to the 
target speaker Sj be xijt. Then, the most likely warping factor αij 
is given by- 
 

��� = �����	



∑ log (�(
��� 	���|��, α))        (1) 

 
In the above equation, ∑ log (�(

��� 	���|��, α)) is the log 
likelihood of the transformed features of speaker Si with respect 
to speaker Sj’s acoustic model. The optimal ��� is obtained by 
sweeping the value of α from 0.8 to 1.2 in steps of 0.025. Using 
the optimal ���, we compute the speaker adapted acoustic 
features for speaker Si adapted to speaker Sj. 

4. Speech Inversion system 
Previous studies have demonstrated that Artificial Neural 
Networks (ANNs) can be used to reliably estimate the TV 
trajectories [14] from the speech signal. Once trained, ANNs 
require low computational resources compared to other 
methods in terms of both memory requirements and execution 
speed. In this paper, we trained speech inversion systems using 
a single hidden layer feed-forward neural network. Since only 
small amounts of data were available for each speaker, single 
hidden layer networks were chosen as the architecture. The 
inputs to the neural network were the 13 dimensional MFCCs 
contextualized with MFCC features from 8 frames on either 
side. Thus, the input dimension was 13x17 = 221. The outputs 
of the network were six dimensional TVs. We trained networks 
with 100, 200, 300, 400 and 500 nodes in the hidden layer and 
selected the best performing network based on performance on 
the test set. The outputs of the trained neural network were 
found to be noisy. The outputs were smoothed using a Kalman 
smoothing technique to obtain smooth TV estimates. Figure 2 
shows the block diagram of our speech inversion system. 

 
Figure 2: Block diagram of speech inversion system 
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5. Experiments 

5.1. Speaker transformed datasets 
Using the VTLN method described in Section 3, each speaker’s 
data was transformed to each of the other 9 speakers’ data. 
Thus, for each speaker, we have 10 sets of data – 1 from the 
speaker and other 9 transformed to the target speaker from the 
other 9 speakers using VTLN. The following figure shows the 
schematic of the transformation procedure for transforming data 
from speakers Sb…Sj to speaker Sa’s acoustic space to create the 
transformed datasets Sba…Sja. In this way, we created 90 
transformed datasets tailored to each of the 10 speakers’ 
acoustic spaces. Figure 3 shows the schematic of the procedure 
adopted to create the speaker transformed datasets. 

 
Figure 3: Schematic of speaker transformed datasets 

creation 

5.2. Speech inversion systems trained 
We trained four types of speech inversion systems for each 
speaker as described in Section 4. The following are the 
descriptions of the different inversion systems trained. 
� SD: 10 Speaker Dependent (SD) speech inversion systems. 
� Sys1: For each speaker, data from other 9 speakers were 

randomly chosen to match the amount of data from the target 
speaker and an inversion system was trained. In total, 10 such 
systems were trained. For example, for speaker ‘a’, data from 
Sb…Sj was randomly sampled to match the amount of data in 
Sa 

� Sys2: For each speaker, VTLN transformed data from other 
9 speakers were randomly chosen to match the amount of 
data from the target speaker and an inversion system was 
trained. In total, 10 such systems were trained. For example, 
for speaker ‘a’, data from Sba…Sja was randomly sampled to 
match the amount of data in Sa 

� Sys3: For each speaker, data from the target speaker and the 
VTLN transformed data from other 9 speakers were 
randomly chosen to match the amount of data from the target 
speaker and an inversion system was trained. In total, 10 such 
systems were trained. For example, for speaker ‘a’, data from 
Sa, Sba…Sja was randomly sampled to match the amount of 
data in Sa. The difference between System3 and System2 is 

that System3 has some of the target speaker’s data in the 
training set. 

In total, 40 speech inversion systems were trained. In the above 
described systems, the amount of training data for each system 
was kept the same in order to have a fair comparison with the 
SD system. However the transformed data available for each 
target speaker was about 10 times more because of the other 9 
speakers’ data put together. We created versions of Systems 1, 
2, and 3 using all the transformed data. We call these systems 
Sys1_alldata, Sys2_ alldata, and Sys3_ alldata. 

6. Results and Discussion 
For each speaker, a test set containing 10% of the speaker’s data 
was created which was kept separate from all the speech 
inversion training and VTLN procedure. Each of the systems 
SD, System1, 2, and 3 were evaluated on each speaker’s test set. 
The Pearson product Moment Correlation (PPMC) was 
computed between the actual and estimated TVs. Table 1 shows 
the correlation results of all the speech inversion systems across 
all speakers. The numbers show correlation values averaged 
across all 6 TVs.  

The correlation for LP tract variable is the least and that for 
TBCL is the highest. The performance of Sys1 is very poor 
compared to SD because the training dataset for this system 
consists of a small number of utterances from multiple speakers. 
Transforming the data from the other 9 speakers to the target 
speaker’s acoustic space using the proposed VTLN approach 
provides an average of 7% absolute improvement in correlation 
over Sys1. The amount of improvement in correlation varies 
across all speakers. Some speakers like JW14 and JW24 show 
marginal or no improvement in the performance, whereas for 
JW31 we see a large 13% improvement. In order to see the 
influence of speaker specific training data on the performance, 
we created Sys3 which contained a part of the target speaker’s 
training set data. The overall amount of training data for Sys3 
was kept same as the amount of training data available for each 
target speaker. This provided an average of 3% improvement in 
correlation compared to Sys2. However, the correlations of 
Sys3 were still 13% below the average correlation of the SD 
systems. Figure 4 shows the plots of the estimated and actual 
TVs for a randomly selected test utterance from speaker JW26’s 
test set. 

Table 2 shows the correlation results for the speech 
inversion systems trained with all the available data from the 
other 9 speakers. These are the systems Sys1_alldata, 
Sys2_alldata and Sys3_alldata as described in section 5.2. We 
observe that the results are much better than those in table 1. 
The performance gain obtained by performing the VTLN 
adaptation is around 4% on an average above the correlation 
results of Sys1_alldata. It is interesting to observe that adding 
all the training data of the target speaker, as done in the training 
of Sys3_alldata provides a system that performs as well as the 
speaker dependent SD systems. This demonstrates that adding 
VTLN adapted data from multiple speakers does not degrade 
the performance of the speaker dependent systems. 
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Table 1: Correlation results of SD, Sys1, Sys2, and Sys3 for all speakers 

Speech 
inversion 
System 

 

Average 
amount of  
Training 

data (mins) 

Spk a Spk b Spk c Spk d Spk e Spk f Spk g Spk h Spk i Spk j 
Aver
age 

JW12 JW14 JW24 JW26 JW27 JW31 JW40 JW45 JW54 JW59 

M F M F F F M M F M 

SD 5.68 0.80 0.78 0.75 0.80 0.74 0.82 0.77 0.78 0.74 0.80 0.78 
Sys1 5.68 0.61 0.62 0.58 0.58 0.50 0.45 0.51 0.57 0.52 0.56 0.55 
Sys2 5.68 0.66 0.61 0.59 0.69 0.58 0.58 0.61 0.60 0.64 0.65 0.62 
Sys3 5.68 0.68 0.64 0.66 0.70 0.61 0.62 0.64 0.65 0.65 0.66 0.65 

Table 2: Correlation results of SD, Sys1_alldata, Sys2_alldata, and Sys3_alldata for all speakers 

Speech 
Inversion 
System 

Average 
amount of  
Training 

data (mins) 

Spk a Spk b Spk c Spk d Spk e Spk f Spk g Spk h Spk i Spk j 
Avera

ge 
JW12 JW14 JW24 JW26 JW27 JW31 JW40 JW45 JW54 JW59 

M F M F F F M M F M 

SD 5.68 0.80 0.78 0.75 0.80 0.74 0.82 0.77 0.78 0.74 0.80 0.78 
Sys1_alldata 51.13 0.71 0.71 0.70 0.69 0.65 0.60 0.63 0.69 0.69 0.68 0.68 
Sys2_alldata 51.13 0.74 0.73 0.73 0.78 0.69 0.69 0.70 0.72 0.70 0.74 0.72 
Sys3_alldata 56.81 0.80 0.78 0.77 0.81 0.74 0.79 0.76 0.77 0.76 0.79 0.78 

 

 
Figure 4: Plot of estimated and actual TVs for a test 

utterance from JW26’s test set 

7. Conclusions 
Based on the results shown in tables 1 and 2, we can conclude 
that the amount of training data plays a great role in the 
accuracy of the speech inversion system. Even if the data is 
from multiple speakers, more data is always good. 

The VTLN speaker adaptation normalizes multiple 
speakers’ acoustic data to match a target speaker. VTLN 
provides an average of 7% absolute improvement of 
correlation (Sys1 to Sys2) on the speech inversion system 
trained on the 9 speakers’ dataset. Adding a small amount of 
the target speaker’s data in the training set improves the 
correlation further by 3% over Sys2. In spite of performing 
VTLN, the correlation performance of Sys2 trained on the 
transformed data is 16% poorer than the Speaker dependent 
system. 

The systems trained with all data shows that having more 
training data from multiple speakers can make the speech 
inversion system better. The accuracy of Sys1_alldata is 10% 

poorer than SD due to the mismatch between the acoustic 
spaces of the training speakers and the test speakers. With the 
VTLN based transformation of the training data, the accuracy 
improves by 4%. This means our proposed adaptation 
technique helps reduce the mismatch between the acoustic 
spaces. 

Adding all of the target speakers’ training data along with 
the transformed data of the other 9 speakers’ does not degrade 
the speaker dependent performance. 

This approach of transforming the training data from 
multiple speakers to create multiple speaker adapted versions 
can be used to create a model selection based approach to 
speech inversion. In such a system we will have multiple 
speaker tuned models and then select the best matching model 
for a test utterance based on a maximum likelihood speaker 
matching approach. 

The frequency warping technique used in this paper is a 
piecewise linear transformation. In future, we plan to explore 
some non-linear warping techniques. We also plan to explore 
other feature space acoustic model adaptation techniques like 
f-MLLR which are popular in the ASR community. The 
experiments in this paper show that data from multiple 
speakers can be normalized and combined to create better 
speech inversion systems. In future, we will try to combine 
data from different articulatory datasets. 
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