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Abstract
Several consumer speech devices feature voice interfaces that
perform on-device keyword spotting to initiate user interac-
tions. Accurate on-device keyword spotting within a tight CPU
budget is crucial for such devices. Motivated by this, we in-
vestigated two ways to improve deep neural network (DNN)
acoustic models for keyword spotting without increasing CPU
usage. First, we used low-rank weight matrices throughout the
DNN. This allowed us to increase representational power by in-
creasing the number of hidden nodes per layer without changing
the total number of multiplications. Second, we used knowl-
edge distilled from an ensemble of much larger DNNs used
only during training. We systematically evaluated these two ap-
proaches on a massive corpus of far-field utterances. Alone both
techniques improve performance and together they combine to
give significant reductions in false alarms and misses without
increasing CPU or memory usage.
Index Terms: keyword spotting, model compression

1. Introduction
Increasingly, mobile and smart home devices offer fully voice-
based interfaces, such as Google Now on Android, Siri on
iPhone 6s, and Alexa on the Amazon Echo. While some de-
vices are beginning to offer limited speech recognition entirely
on-device, the majority of devices stream audio to the cloud for
recognition. For privacy reasons, these devices rely on the user
to preface their commands with a keyword, such as “Alexa”.
For this application, accurate on-device keyword spotting is cru-
cial to usability.

In the past, keyword/filler Hidden Markov Model-Gaussian
Mixture Models were commonly used. However, they have
largely been replaced with better performing deep neural net-
work (DNN) based keyword spotting systems (KWS). For ex-
ample, Chen et al. described a state-of-the-art DNN based KWS
that used a simple thresholding based decoder [1]. Recently,
several RNN based KWS have been proposed [2, 3, 4, 5] that
can leverage longer temporal context to improve performance
over fixed-window DNN systems. However, DNN based KWS
strike a balance between performance and operational simplic-
ity. So in this work, we focused on applying model compression
techniques to the DNN KWS system described in [1], although
our methods also apply to RNN based KWS and multisystem
cascaded approaches (e.g., [6]).

For the KWS application, test time computational effi-
ciency is crucial, whereas model training time is largely irrel-
evant (within reason) due to the availability of powerful GPUs
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for training. Numerous approaches have been proposed for
compressing models at test time in image classification and
speech recognition. Tying weights with random hash func-
tions [7] and quantizing blocks of weights with vector quan-
tization [8] both provide significant reductions in memory us-
age. However, systematic evaluation of their effect on CPU us-
age has not been explored. Alternatively, by using structured
weight matrices (e.g., low tensor rank or Toeplitz), we can per-
form the DNN forward pass more efficiently. This approach
has shown significant success for both CNNs in image classifi-
cation and DNNs in speech recognition [9, 10, 11, 12]. Finally,
we can train a small “student” model to mimic a much larger
“teacher” model using soft targets generated from the teacher
model [13, 14]. Previous work on model compression for KWS
used low-rank input-to-hidden weight matrices to reduce mem-
ory usage [15], however, this did not reduce CPU usage.

In this work, we focused on improving KWS performance
without increasing CPU or memory usage. In particular, we
investigated the use of low-rank weight matrices [16, 17, 18]
and knowledge distillation [13, 14] applied to the DNN based
KWS system described in [1]. We demonstrate that both of
these techniques alone improve performance and together they
combine to give significant reductions in false alarms (FAs) and
misses (≈ 20% relative reduction in miss rate over a wide range
of FA rates) with comparable CPU and memory usage to the
baseline.

In section 2, we describe the baseline KWS system used
in all of our experiments, describe our training recipe for low-
rank weight matrices, and review knowledge distillation. In sec-
tion 3, we report on a systematic evaluation of the proposed ap-
proaches. Finally, we end with conclusions and future work.

2. Small-Footprint Keyword Spotting
In many cases we have access to powerful GPUs during train-
ing, but at test time, the model must run in a resource con-
strained environment. Because our focus is on model compres-
sion techniques and not the specific KWS implementation, we
based our experiments on the state-of-the-art DNN KWS sys-
tem previously described in [1]. However, we expect that the
results will generalize to other DNN or RNN based KWS sys-
tems. We note that this is a different system than the production
KWS used in Amazon Echo. For completeness, we briefly re-
view the DNN KWS from [1].

The DNN KWS can be roughly broken down into three
components: feature extraction, classification, and posterior
smoothing. First, we extracted 20 dimensional log-mel filter-
bank energies over 25 ms frames with a 10 ms frame shift. The
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input to the DNN was 20 left context frames, a middle frame,
and 10 right context frames stacked (620 dimensional input).
We used an asymmetric context because longer right context
increases latency.

As the baseline DNN, we used a DNN with 4 hidden lay-
ers, 248 nodes per layer, and sigmoid units. Preliminary experi-
ments with rectified linear units did not show significant differ-
ences, so we used sigmoid units in all other experiments. The
DNN had a binary output indicating the presence or absence of
the keyword (e.g., “Alexa”) at the middle frame (i.e., most tar-
gets are background except for the≈70 frame targets from each
keyword). We found that adding a simultaneous additional ASR
label task improved performance (see [20] for details). So, we
used this in all experiments except those with knowledge distil-
lation, where it was unnecessary as long as the teacher model
was trained with the multi-task objective. Notably, the DNN is
trained to optimize a framewise cross-entropy loss, whereas the
detection task is truly a sequence level task, however, the two
are highly correlated. We trained the DNN using distributed
asynchronous SGD [19, 20]. We used a performance based
learning rate schedule (similar to “newbob”), where the learning
rate is halved every time performance degrades on the develop-
ment set. The initial learning rate and batch size were tuned
on the development set. Preliminary experiments with adaptive
per weight learning rate algorithms ADADELTA [21] and RM-
SProp [22] with the baseline architecture did not improve per-
formance, so for all other experiments, we did not use adaptive
per weight learning rates.

Finally, as in [1], for decoding, we smoothed the posteriors
by averaging the output over 30 frames of a sliding window and
applied a threshold to detect keywords.

2.1. Low-rank weight matrices

Low-rank weight matrices, implemented as linear bottlenecks
(BN), have been used in DNNs for speech recognition [16],
where they reduce the number of multiplications during train-
ing and testing at the expense of representational expressive-
ness. Previous work has shown that reducing the rank can have
a regularizing effect [17]. However, most previous work has re-
stricted the bottleneck to the input and output weight matrices,
where the majority of the parameters are. In our system, the in-
put and hidden layers are similar in size while the output layer
is small.

We explored the tradeoff between the number of nodes per
hidden layer and the size of the linear bottleneck. To train the
reduced rank DNN, we start by completely training the full-rank
DNN. Then, one layer at a time, starting from the weight ma-
trix connected to the input layer, we added a linear bottleneck
initialized by the SVD of the full-rank matrix. This changes the
number of parameters from M × N to (M + N) × R where
M,N are layer sizes and R is the size of the linear bottleneck.
Then, we trained for one epoch, and repeated this step until
all weight matrices were decomposed (except the hidden-to-
output weight matrix). Finally, we finetuned the network for 20
epochs. When (M +N)×R < M ×N , the number of param-
eters in the model is reduced. When (M +N)×R > M ×N ,
we can train the model and then multiply the linear layers out
before model evaluation. Hence, during evaluation, the model
never used more thanM×N multiplications per nonlinear hid-
den layer (and in many cases far fewer).

We found that proceeding from input to output rather than
the reverse produced better results and that initializing the linear
bottleneck with the SVD was essential for training convergence.

Moreover, we found that finetuning the initialization from SVD
was necessary to achieve strong performance.

2.2. Knowledge distillation

Recent work has shown that a computationally efficient model
can be trained to mimic a teacher ensemble of larger mod-
els [13, 14]. This is referred to as knowledge distillation (KD).
We trained multiple large teacher DNNs and formed an ensem-
ble model by averaging posteriors. The student KD DNN was
trained with the weighted criterion:

λ
∑
i

log(pi)ti +
1− λ
T 2

∑
i

log(pi(T ))qi(T ) (1)

pi(T ) =
p
1/T
i∑
j p

1/T
j

, qi(T ) =
q
1/T
i∑
j q

1/T
j

, (2)

where pi is posterior output for class i, ti is a binary indicator
for the correct label, qi is the posterior output from the teacher
model, and λ and T are hyperparameters tuned on the develop-
ment set. The first term is the standard cross-entropy loss and
the second term is a “heated” cross-entropy loss between the
output and the posteriors from the teacher model. Notably, the
second term is scaled by 1/T 2 so that the relative weighting be-
tween the gradients of the two terms is stable as T is varied [13].
Intuitively, the student model is penalized less for errors that
the teacher model also makes whether they come from difficult
examples or labeling errors. This allows the student model to
focus its limited representational power.

Previously, knowledge distillation had been applied to mod-
els with larger target spaces, and it had been hypothesized that
its benefit is largely due to the small model learning from the
relative sizes of the off target posteriors. Given that our target
space is binary, it was unclear if knowledge distillation would
be helpful in this setting.

3. Results
For training and evaluation, we used an in-house far-field cor-
pus with an order of magnitude more instances of the keyword
“Alexa” and background speech utterances than the largest pre-
vious study [1]. The size and composition of this training set
and the KWS system is different from that used in Echo. We
partitioned 90% of the data for training, 1% for development,
and 9% for testing. Given the large size of the corpus, the
1% development set was efficient to evaluate and was more
than sufficient to tune parameters (i.e., the development and
test set performance were highly correlated). Furthermore, the
observed differences on the test set were strongly statistically
significant. We also found that different random model initial-
izations did not significantly affect final performance metrics.
However, to be most pessimistic, we ran several experiments
with random initializations for the baseline model and used the
best initialization for comparison.

As we noted earlier, the training objective and the detec-
tion task are mismatched (similarly, to frame error rate (FER)
and word error rate in ASR). Although we evaluate KWS per-
formance by plotting a detection (DET) curve, we also found
it instructive to analyze the FER because that is the objective
being trained on.

When trained and evaluated on our far-field corpus, the
baseline DNN had comparable performance to the results re-
ported in [1].
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Figure 1: Relative FER (lower is better) on the test set vs. size
of linear bottleneck layers. Full (second to the right) corre-
sponds to the models with bottleneck layers of equal size to the
hidden layers. No BN (furthest right) corresponds to the mod-
els without linear bottlenecks. The black markers correspond to
models that have comparable parameters and multiplications to
the baseline 248 nodes per hidden layer model.

3.1. Low-rank weight matrices

We trained models with 248, 300, 400, and 500 nodes per hid-
den layer while varying the size of the linear bottleneck layer.
Fig. 1 shows the relative FER of these models compared to the
baseline model (248 nodes per hidden layer and no linear bot-
tlenecks; lower is better and below 0 indicates superior perfor-
mance over the baseline). As expected, we observed that in-
creasing the size of the linear bottleneck improved performance.
We suspected that performance would peak at an intermediate
rank due to the regularizing effect of constraining the rank. Sur-
prisingly, the FER continued to decrease as the number of pa-
rameters exceeded the number of parameters in the model with-
out linear bottlenecks (e.g., the 248 node model with size 248
node linear bottlenecks has a nearly 5% relative reduced FER
compared to the 248 node model without linear bottlenecks).
Importantly, because the bottleneck is linear, we can always
multiply the linear transforms after training, so that the test time
network will never have more parameters or require more mul-
tiplications than the network without linear bottlenecks. This
suggests that training with the linear bottlenecks allows us to
find a better local optima. As we mentioned earlier, training the
baseline with adaptive learning rates did not improve perfor-
mance. Future work will explore this optimization issue further
and determine if it generalizes to other tasks.

We were primarily interested in models that have similar
runtime CPU and memory usage as the baseline model. Models
with the best performance on the development set for each curve
and comparable number of parameters and multiplications are
highlighted with black markers in Fig. 1. Of these, the 400
node per hidden layer model with 100 node linear bottlenecks
(denoted 400 x 100 BN in Fig. 3) is the best configuration on
the development set (corresponding to a 6.3% relative reduction
in FER on the test set, Fig. 1)

We also visualized performance versus number of multipli-
cations and parameters in Fig. 2. This shows the tradeoff avail-
able between performance and runtime efficiency. In all cases,
the low-rank models outperform the models without linear bot-
tlenecks.

3.2. Knowledge distillation

We trained ten 600 node per hidden layer DNNs with differ-
ent random initializations to form the teacher ensemble. Then
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Figure 2: Relative FER (lower is better) on the test set vs. num-
ber of multiplications/parameters. The vertical line marks the
the number of multiplications/parameters used by the baseline
model. The filled in circles correspond to models without linear
bottlenecks. As explained in Section 2.1, models with linear bot-
tlenecks never have more multiplications/parameters than the
corresponding model without bottlenecks.

to compare against the baseline model, we trained a 248 node
per hidden layer DNN using the KD criterion and performed a
grid search over λ and T (Table 1). The best configuration on
the development set had large gains on the test set (17.1% rela-
tive reduction in FER) suggesting that even when the target set
is small, knowledge distillation is still an effective technique.
Moreover, the results suggest that an extended hyperparameter
search may lead to further improvements.

Table 1: Relative FER (compared to the baseline; lower is bet-
ter) on the test set as KD hyperparameters are varied. The best
configuration from the development set is bolded.

λ
0.8 0.6 0.4 0.2 0

T 1 -0.013 -0.055 -0.079 -0.117 -0.119
2 -0.031 -0.052 -0.118 -0.157 -0.165
5 -0.072 -0.098 -0.157 -0.16 -0.164
10 -0.101 -0.171 -0.145 -0.164 -0.155

3.3. Combined low-rank and knowledge distillation

Finally, we combined the two approaches using the best low-
rank architecture (400 x 100 BN). To train the combined model,
we used the KD training criterion throughout the process de-
scribed in Section 2.1. The training process can be broken into
two steps: 1) completely training the initial full-rank model and
2) adding linear bottlenecks and finetuning. We allowed sep-
arate hyperparameter settings (λ and T ) for each step. The
grid search for training the initial 400 nodes per hidden layer
model without linear bottlenecks is shown in Table 2. As before,
knowledge distillation provided large improvements in FER. In-
terestingly, for the subsequent step, knowledge distillation did
not substantially improve performance over using cross-entropy
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Figure 3: Test set DET curves on the KWS task. The DET curves
only show false alarm rates up to a multiplicative constant due
to the sensitive nature of this information. The plot still ac-
curately preserves the relative performance improvements be-
tween different systems across a range of reasonable operating
thresholds.

with the hard targets1 (23.9% versus 23.6% relative reduction
in FER on the test set, respectively; as before, the FER is rel-
ative to a 248 nodes per hidden layer baseline without linear
bottlenecks). We conclude that it suffices to use knowledge dis-
tillation to train the initial model without linear bottlenecks and
that knowledge distillation is unnecessary when adding the lin-
ear bottlenecks to that initial model.

Table 2: Relative FER for a 400 nodes per hidden layer model
on the test set as KD hyperparameters are varied (compared to
a 400 nodes per hidden layer baseline model trained without
KD; lower is better). The best configuration from the develop-
ment set is bolded.

λ
0.8 0.6 0.4 0.2 0

T 1 -0.018 -0.035 -0.074 -0.096 -0.126
2 -0.045 -0.108 -0.123 -0.159 -0.164
5 -0.129 -0.154 -0.174 -0.171 -0.171

10 -0.162 -0.144 -0.169 -0.171 -0.164

Although both techniques reduced the DNN frame error,
the KWS criterion is a correlated, but different sequence level
objective. We evaluated the top performing models (all with
comparable runtime CPU and memory usage) by plotting DET
curves in Fig. 3 following [1]. The DET curves measure the
false alarm rate versus the miss rate. We found that both tech-
niques individually improved end-to-end KWS performance,
and the combination further improved performance (≈ 20%
relative reduction in miss rate over a wide range of FA rates)
all with comparable CPU and memory budget. This is a notable
improvement over the state-of-the-art baseline [1].

1To clarify, this model still used KD when training the initial 400
nodes per hidden layer model. It had substantially better performance
than the 400 x 100 BN model trained solely on hard targets in both
steps.

4. Conclusion
We compressed the DNN in a KWS system by adding linear
bottlenecks between each weight layer and by distilling knowl-
edge from a large ensemble of models. Using the low-rank
constraint, we reduced relative FER by 6.3% with comparable
CPU and memory usage to a baseline model. Distilling knowl-
edge from an ensemble of larger DNNs during the training pro-
cess reduced relative FER by 17.1%. These two techniques to-
gether brought a 23.9% relative reduction in FER, which led to
an ≈ 20% relative reduction in miss rate over a wide range of
FA rates. Both techniques are suitable for the on-device KWS
task because they leverage benefits from larger DNN without
increasing CPU or memory usage. However, both approaches
greatly extend the training process, and it will be useful to ex-
plore ways to shorten the training process. In the future, it
will also be worthwhile to apply these model compression tech-
niques to RNN based KWS to take advantage of their longer
temporal context.
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