INTERSPEECH 2016
September 8—12, 2016, San Francisco, USA

Using Clinician Annotations to Improve
Automatic Speech Recognition of Stuttered Speech

Peter A. Heeman,? Rebecca Lunsford,** Andy McMillin,>? and J. Scott Yaruss*

'BioSpeech, Lake Oswego, OR
2Center for Spoken Language Understanding, Oregon Health & Science University, Portland, OR
3Speech & Hearing Sciences, Portland State University, Portland, OR
“Dept. of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, PA

heemanp@ohsu.edu

Abstract

In treating people who stutter, clinicians often have their clients
read a story in order to determine their stuttering frequency. As
the client is speaking, the clinician annotates each disfluency.
For further analysis of the client’s speech, it is useful to have a
word transcription of what was said. However, as these are real-
time annotations, they are not always correct, and they usually
lag where the actual disfluency occurred. We have built a tool
that rescores a word lattice taking into account the clinician’s
annotations. In the paper, we describe how we incorporate the
clinician’s annotations, and the improvement over a baseline
version. This approach of leveraging clinician annotations can
be used for other clinical tasks where a word transcription is
useful for further or richer analysis.

Index Terms: stuttering, automatic speech recognition, disflu-
ency counts, user-interface

1. Introduction

Stuttering is a communication disorder characterized by dis-
fluencies that are frequent and disruptive to communication.
Common types of disfluencies include sound, word, and phrase
repetitions, revisions, prolongations, blocks, and interjections.
Speech Language Pathologists (SLPs or clinicians) use disflu-
ency counts to decide whether a client should be treated, to as-
sess treatment progress, and to document treatment outcomes
[1, 2, 3]. Disfluency counts are often done in real-time by the
SLP as a client is talking. However, these are not very spe-
cific, as SLPs might only count the total number of disfluency
rather than count each type separately. Blocks, prolongations,
and sound repetitions are often viewed as more indicative of
stuttering than phrase repetitions, revisions, and interjections.
The disfluency counts can also not easily be re-examined, with-
out relistening to the entire audio, as disfluencies counts are not
tied to timepoints in the audio file.

An alternate to real-time counts is the verbatim transcript
approach. Here, the SLP first transcribes exactly what was
said, and then marks up the transcript with disfluency codes
[4, 5, 6]. This allows the SLP can review their annotations.
Furthermore, the type of each disfluency is identified, as well
as what words they occur on, allowing for a much richer anal-
ysis of a client’s disfluency patterns. However, few tools ex-
ist to help with this type of disfluency counts. Automatic ap-
proaches to transcribe stuttered speech and count disfluency

This study was funded by the NIH under grant 2R42DC009944-02
to BioSpeech, where Drs. Heeman and Lunsford were employees. This
potential conflict of interest has been reviewed and managed by OHSU.

Copyright © 2016 ISCA

2651

have been attempted (e.g., [7, 8]), but Automatic Speech Rec-
ognizers (ASRs) have problems even with fluent speech. Due
to the amount of time that this approach can take, this approach
is rarely used by SLPs in clinical practice, and only sometimes
used in research studies.

Our long-term goal is to build computer tools that help
SLPs and researchers count disfluencies that can be used to an-
alyze a client’s disfluency patterns. Rather than striving for a
fully automatic tool, which would transcribe and annotate stut-
tered speech, we have set a more modest goal of assisting the
SLP in this process. Our goal is reduce the time required of an
SLP to produce verbatim transcript disfluency counts from over
20 times real-time to just several times real-time.

In previous work [9], we proposed a multi-step process
for creating the transcript-based disfluency counts, given be-
low. For that work (and the current work), we focus on read
speech, where the client is reading a story out loud. Such
speech samples are regularly used in stuttering diagnosis and
treatment [10] and allow us to leverage the highly constrained
nature of the speech to have usable ASR output, even for stut-
tered speech.

Step 1: The SLP annotates the disfluencies in real-time, per-
haps as the client is speaking, using 8 categories: sound,
word and phrase repetitions, revisions, interjections, blocks,
prolongations, and other [2, 11].

Step 2: An ASR uses the text from the story to produce a word
transcription (possibly with errors in it).

Step 3: A computer program merges the ASR transcript with
the SLP’s annotations to produce an annotated verbatim tran-
script. Each of the SLP’s annotations are placed on a word in
the transcription that it is likely to have occurred on.

Step 4: A computer program determines a set of regions for the
SLP to review and correct.

Step 5: The SLP reviews and corrects the word transcription
and disfluency annotation for each region.

With this approach, a relatively complete annotated verbatim
transcript can be produced with a single real-time pass and a
set of samples that are re-heard and corrected, if need be.

In our previous approach, the SLP’s annotations are applied
in Step 4 after the ASR produces the 1-best word transcription
in Step 3. So, the SLP’s annotations are not leveraged in find-
ing the best word transcription. Thus, if the SLP annotated a
word repetition, hypotheses with a word repetition in the vicin-
ity would not be given preferential treatment. In this paper, we
use an ASR to create a word lattice. We then search through
the lattice to find an optimal path, making use of the acoustic
and language model scores, and the clinician’s real-time anno-
tations.

http://dx.doi.org/10.21437/Interspeech.2016-1388

In the rest of the paper, we first describe our development
and test data in Section 2. In Section 3, we analyze the clin-
icians’ annotations to understand how they might be used to
improve ASR. Section 4 describes how we create the lattices
using Sphinx4. Section 5 describes how we augment our algo-
rithm for finding paths through the lattice to take into account
the clinicians’ real-time annotations. Section 6 gives an evalu-
ation of our results. In Section 7, we conclude and discuss the
relevancy of this work to other annotation tasks. Any time that
a clinician is classifying events that are occurring in a client’s
speech could potentially be used in a rescoring pass to improve
the transcript.

2. Development and Testing Data

All of the data used in this study is based on audio files of chil-
dren, aged 8 through 12, who stutter, reading aloud short stories.
The audio files are between 1 and 2 minutes in length. These
files were transcribed using SpeechView [12]. We also anno-
tated these files with a disfluency annotation scheme [13] that
is more fine-grained than the 8 annotation codes that clinicians
typically use. These annotations were done very carefully (and
very slowly), but by someone without clinical experience.

As we are interested in aligning real-time clinician anno-
tations, we have created a development and test set. First, we
had one of the co-authors, who is an SLP, use prototypes of our
real-time annotation tool to annotate some of the audio files that
we collected. This data is only used in the development of our
annotation alignment tool, and refer to it as DevA.

The second set of data was collected in a formal evalua-
tion of our annotation tool and our review and correction tool.
In that study, we compared how well SLPs annotated disfluen-
cies with our computer tools versus pencil-and-paper using the
8 categories of disfluencies. We recruited five SLPs who regu-
larly see clients who stutter and regularly use a computer. They
received 4 hours of training, of which about one third was about
applying the disfluency scheme in real-time with paper and the
computer tools.

Subjects did two sessions, each lasting about 1.5 hours, sep-
arated by one week. Subjects annotated 20 audio files, from our
corpus of stuttered speech, which were not used in DevA. We
grouped the audio files by speaker, and included a practice au-
dio file at the beginning of each group, so as to familiarize the
SLPs with the speaker’s disfluency patterns. With each audio
file, SLPs alternated using pencil-and-paper to count the num-
ber and type of disfluencies, and using the annotation and cor-
rection tools (Step 1 and 5). Half of the subjects used paper
first, and the rest used the computer tools first. For the second
session, subjects switched which method they used for each file.

In all, each clinician annotated all 20 files with the annota-
tion tool, giving us time-aligned annotations. For each clinician,
we put 8 files into a development set, referred to as DevB, and
12 files into a test set, alternating which files are in each set for
each clinician.

3. Quality of Real-time Annotations

In order to make use of clinician real-time annotations in im-
proving the ASR output, we need to understand how good these
annotations will be. As the SLP will be annotating disfluencies
in real-time, as the client is speaking, there is no time to review
them and correct any mistakes. Clinicians will sometimes miss
a disfluency, annotate one by mistake, or annotate it with the
wrong type. Due to human reaction time [14], the annotation

2652

| | FII[Rv[Rp[Rw][Rs] P[B]O]
F Fluent I 0] 3] 4| 6/13| 8|0
I Interjection | 47|0| 1| O] O 2| O 3|0
Rv Revision 3003311 7| 0 5| 1]1
Rp Phrase Rep 2210 3|33] 6| 0] 0| 01
Rw Word Rep 26(0| 0| 4| 55| 7| 2| 0]2
Rs Sound Rep 69(0| 1| O] 15|58| 7(10]0
P Prolongation | 1150 O 1| 1| 4{61| 4|0
B Block 310 1| O 0| 5| 6|22]0
O Other 0j{0| 0O 0| O O] O OO

Table 1: Confusion Matrix

will not be exactly where the disfluency occurred, but it should
be within a couple of seconds.

First, we compare the real-time clinician annotations to the
reference annotations. As the reference annotations are in a dif-
ferent scheme, we wrote a computer program to convert them,
and then used dynamic programming to best align the reference
and clinician annotations that were in a 5s window, as we did in
our earlier work [9]. We checked the output of the algorithm to
make sure it was making reasonable alignments.

In Table 1, we give a confusion matrix of the reference
annotations (rows) versus the clinician real-time annotations
(columns) for the development set DevB. The bold entries along
the diagonal shows where the two annotations agree. The col-
umn labeled ‘F’” shows the number of annotations that the clini-
cian missed. The row showing ‘F’ shows the annotations where
the clinician annotated a disfluency where there is not one in the
reference annotation. The other entries show disagreements be-
tween what was annotated. There are some patterns in terms of
which annotations tend to be easily confused with other annota-
tions. For example, sound and word repetitions are confusable,
as are blocks and sound repetitions.

Second, we compute the average lag time for the clinicians’
real-time annotations that were correctly aligned with a refer-
ence annotation for DevB. For the reference annotation, we use
the time that the disfluency could have been noticed. Consider a
phrase repetition, say ‘we can go to . can go to the store’. In the
reference annotation, the phrase repetition code of ‘Rp’ would
be placed on the first instance of ‘to’. However, it is only af-
ter the speaker says the second instance of ‘can’ that a clinician
has any hope of identifying it. So, for phrase repetitions, we
compare clinician’s time against the end of the word ‘can’.

| Type [Number [Average Lag [SD ‘
Rv 33 2.32s | 0.80s
Rp 33 2.01s | 0.85s
Rw 55 1.74s | 0.81s
Rs 58 1.73s | 0.93s
P 61 1.39s | 1.01s
B 22 2.05s | 1.07s
All 262 1.79s | 0.96s

Table 2: Lag times

Table 2 shows the average lag times. As can be seen, sound
and word repetitions are annotated faster than revisions and
phrase repetitions. This might be because more context than
the first word of the new material might be needed to identify
them. These results on confusion and lag times will influence
how we incorporate the clinicians’ real-time annotations in our
processing.

4. Creating the Word Lattice

To incorporate clinicians’ real-time annotations, as well as more
complex modeling of disfluency patterns, we rescore the word
lattice from an ASR. Our audio files range between 1 and 3
minutes in length. For this project, we are using Sphinx 4
[15], which has problems producing word lattices for audio files
longer than 12 second. Hence, we segment the audio files into
smaller files, run the ASR on each to produce the word lattice
for each, and then stitch them together so that our rescorer can
run across the entire file.

There has been a large amount of work done on speech seg-
mentation (e.g., [16]). However, our domain of read speech
spoken by someone who stutters requires special consideration.
First, the story text constrains what the speaker will say, which
makes a decoder-guided approach practical, in which an ASR
is run on the entire file to find silence regions. We run Sphinx
4 on the entire audiofile to produce a 1-best word transcription.
As described in earlier work [9], we hand-crafted a bigram lan-
guage model based on the story being read and common word
patterns for disfluencies: a speaker tends to say the next word,
say just part of the next word, say an interjection, or backtrack to
an earlier place in the story (typically the beginning of a phrase,
or the current sentence).

Typically with the decoded-guided approach, the output is
used to locate silence regions, at which the audio file is seg-
mented. The second issue that we must consider is that we are
dealing with stuttered speech. Disfluencies in stuttered speech,
especially multi-iteration sound repetitions, prolongations, and
blocks, pose difficulties for ASRs, and might be misrecognized
as silences. Hence, for stuttered speech, silences are not an ideal
place to segment an audio file, as we want the lattices to capture
other alternatives for the silence region.

We want to segment the audio file at places where the one-
best output of the ASR is most likely to be correct. First, people
rarely stutter on the last word of a sentence, and so the last word
of a sentence is likely to be correctly recognized by the ASR.
Using the ASR output matched to the story text, we can identify
all of the sentence endings; these are candidates for segmenting
the audio file. Second, people who stutter will be fluent for
stretches of speech. Hence, we look for fluent word sequences
(where words are being said in the exact order of the story and
without any pauses). The middle of these sequences are candi-
dates for segmenting the audio file.

The candidates for segmentation are also given a score. For
cutting in the middle of a sequence, the longer the fluent stretch
on both sides of the cutpoint, the higher the rank. For end-
of-sentence candidates, ones that are followed by a silence are
scored higher, as well as ones that have a fluent stretch before
them. We then use a greedy algorithm to find a set of segmenta-
tion points which gives as few segments as possible, and where
the segments are no longer than 12s.

Once we have the segmentation, we run Sphinx 4 on the
smaller audio files. For the language model, we do not use the
entire story text, but the part of the story that was identified
in the 1-best word transcription of the audio segment. The lan-
guage model used in this second pass is a richer language model
that also accounts for sequences of interjections.

Finally, we stitch together the word lattices from each seg-
ment. Each of the individual lattices has a start and an end node.
We simply change all of the arcs going to the end node in one
lattice to instead go to all of the nodes that follow from the start
node.

2653

O
N

lattice for segment i+1

A

- =

lattice for segment i

lattice i and i+1 stitched together

Figure 1: Stitching together lattices

5. Rescoring the Lattice

We rescore this lattice with our language model, to account for
word transitions across the segment boundaries.

We rescore with a path-based language model that can deal
with longer distance dependencies, which phrase repetitions
and revisions require [17]. This is also required by multi-
iteration word and sound repetitions, where the same word or
sound is said several times in succession.

For our evaluation, we compare the output of the speech
recognizer and rescoring passes against the hand-transcribed
reference (Section 2). We use word error rate (WER):

substitution + insert + misses
WER =

correct + substitutions + misses

The results from each pass for our test set are given in Table 3.
As can be seen, after segmenting the audio files into smaller seg-
ments, and rescoring with the language model, we get a small
decrease in performance, from 7.27% to 7.55%. Rescoring with
our richer language model brings us back to 7.27%. As this
model is data-driven, we expect that as we collect, transcribe
and annotate more data, that this result will improve.

Oracle
2.62%

Rescore
7.27%

Lattices
7.55%

First-Pass
7.27%

Total

Table 3: Results of Producing a Lattice

For reference, we also show the WER of the best possible
path through the lattice (using an oracle). This has a WER of
2.62%. About half of the error in the oracle rate is due to words
that are not in the language model, for example when a speaker
inserts the word ‘the’ or ‘a’ where there is not one in the story,
or uses an interjection that we did not model, such as ‘like’ or
‘I mean’. The purpose of our work is to use the clinicians’ real-
time annotations to improve the WER from 7.27% to closer to
2.62%.

6. Rescoring with Annotations

We use the algorithm from the previous section that searches
though paths through the lattice. We currently focus on revi-
sions, interjections, and phrase, word and sound repetitions. In
future work, we will incorporate blocks and prolongations.

Path Structure: For each partial path that is being considered,
we keep track of which annotations have yet to be used. For
each word in the path, we keep track of which clinician anno-
tations have been assigned to it. For interjections, this is the
interjection word. For repetitions, this is the last word of the
material that is about to be repeated. For multi-iteration word
and sound repetitions, this is the the first occurrence.

Algorithm: We augment the code from the previous section, as
shown below. When extending a path p for a word w, we first
determine how relevant each possible annotation is (including
fluent), given the path p and the current word w. For each of the
SLP’s annotations that are in the vicinity and that have not yet
been aligned (including no annotation), we create a new path,
using the language model (LM) probability of the word w given
the path p and the factor for that annotation.

for each time point ¢
for each path p that ends at time t
for each word w that can extend path p
compute new LM prob for w given p
from p+w, determine how good any annotation is
for each SLP annotation (including none)
not aligned yet?
in right time frame?
How well does it match the word+context
adjust LM score
create new path

What annotations make sense from the transcription? For
a path p and next word w, we determine what annotation tags
make sense. This task is simplified as we know the index of
each word in p+w into the story. Hence, if the index of the
current word precedes the index of the previous word, then the
speaker is likely backtracking, and making a phrase repetition
or a revision. If the index is the same, the speaker is likely
making a sound or word repetition.

Rather than determining a single annotation tag that makes
sense, we evaluate how likely each tag is. In this way, we can
model how the SLP might confuse one annotation for another.
Furthermore, we include fluent (F) as one of the options so we
can account for whether the clinician missed it. Note that even
when no disfluency annotation makes sense given the transcript,
we still have a score for each annotation. The scores for each
annotation are used to either reward or penalize a word tran-
scription (described later in this section).

In accounting for the time lag, we take into account what
word a disfluency can be noticed by, versus which word in the
transcription should have the annotation mark (see description
of Table 2). As we are processing the current word, we will look
for disfluency patterns in which the current word is involved.
For example, for phrase repetitions, say ‘we can go to . can go
to the store’, for each word of the repetition, ‘can’, ‘go’ ‘to’, we
will consider this as a target for a phrase repetition annotation
tag from the clinician, so long as we haven’t already assigned
the first instance of ‘to’ with a disfluency tag.

Penalizing and rewarding paths through the lattice. Each
possible tag has a factor assigned to this. Due to the small
amount of development data, we tuned these factors by hand
to optimize performance on the DevA and DevB. These factors
either penalize or reward a word transcription. We are trying
out the clinician annotations over a time-window. But, each
clinician annotation must be used once. So, if there is a word
sequence that is consistent with that annotation somewhere in
the time-window, that path will be rewarded. If there is no con-
sistent word sequence in the path, the path will be penalized.

2654

How much to penalize the time lag? As shown in Table 2,
clinician annotations tend to lag by a certain amount. Hence,
we modify the factors to take into account how far they are from
the ideal time.

7. Evaluation

As discussed in Section 2, our test data consists of 12 audio
files for each of the 5 clinicians. Table 4 gives the results of
our rescoring with the clinicians’ real-time annotations, in the
column labeled ‘Annotations’. For the reader’s convenience, we
repeat the four columns of results from Table 3. Overall, on the
test set, we improve the WER from 7.27% to 6.92%. This is
a relative improvement of 4.8%. Given that the best possible
path through the lattice has an error rate of 2.62%, the relative
improvement with respect to what is possible is 7.5%.

We also show the results for each clinician. We see that
for each of the 5 clinicians, the WER on their 12 audio files
improved, and that it improved by at least 0.18% absolute.

First-Pass | Lattices | Rescore | Annotations | Oracle
Cl 549% | 591% | 5.73% 5.55% | 1.73%
C2 6.80% | 7.04% | 7.00% 6.80% | 2.68%
C3 7.05% | 7.48% | 7.27% 6.94% | 2.42%
C4 7.82% | 795% | 7.61% 7.18% | 2.97%
C5 8.87% | 9.14% | 8.64% 8.10% | 3.21%
Total 727% | 7.55% | 7.27% 6.92% | 2.62%

Table 4: WER Results

8. Conclusion

In this paper, we presented our work on using speech technol-
ogy to build better tools for clinicians to use in diagnosing and
treating people who stutter. Using the audio file of a person
reading a text, along with a clinician’s time-aligned disfluency
annotations, we use an ASR and lattice rescoring to produce an
annotated verbatim transcript. We find that we can improve the
quality of the word transcription by incorporating the clinician’s
annotations by a relative factor of 7.5%. This will mean clini-
cians will need to spend less time correcting the word transcrip-
tion, and can spend more time reviewing the client’s stuttering
patterns, and thus personalizing the therapy for client. We ex-
pect that as we collect more data, we can employ data driven
techniques to further improve the transcription.

This work is not only relevant for stuttering. Tests in
which a trained clinician monitors a speaker while “scoring” the
speaker’s response are a standard part of the batteries used to as-
sess cognitive and speech skills. One example is the Weschler
Logical Memory test, used to assess immediate and delayed
memory recall [18]. For this test, the speaker is asked to retell
a story the clinician has read to them, both immediately after
hearing the story and again after 15 minutes of other tasks.
During retelling, the clinician is expected to create an abbre-
viated transcript of the story retelling, while also noting which
of 25 story elements the speaker has recalled — a challenging
real-time annotation task. However, using techniques such as
those described herein, the clinician might need to only iden-
tify the recalled story elements, and rely on ASR to produce the
transcript and count the number of unique recalled elements.
Furthermore, the resulting time-aligned transcription could be
used to measure other features of the speech, such as syntactic
complexity, pause-rate, and hesitation, that are also indicative
of cognitive impairment [19, 20].

[1]

[2]

[3]

[4]

[5]

[7]

[8]

[9]

[10]
(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

9. References

J. S. Yaruss, “Clinical measurement of stuttering behaviors,”
Contemporary Issues in Communication Science and Disorders,
vol. 24, pp. 33-44, 1997.

——, “Real-time analysis of speech fluency: Procedures and reli-
ability training,” American Journal for Speech-Language Pathol-
ogy, vol. 7, no. 2, pp. 25-37, 1998.

E. G. Conture, Stuttering: its nature, diagnosis, and treatment.
Allyn & Bacon, 2001.

N. Bernstein Ratner, B. Rooney, and B. MacWhinney, “Analysis
of stuttering using CHILDES and CLAN,” Clinical Linguistics
and Phonetics, vol. 10, no. 3, pp. 169-187, 1996.

H. H. Gregory, J. H. Campbell, C. B. Gregory, and D. G. Hill,
Stuttering Therapy: Rationale and Procedures. Pearson Allyn
& Bacon, 2003.

J. Campbell, D. Hill, and M. Driscoll, “Systematic Disfluency
Analysis: Using SDA to determine stuttering severity,” in Annual
Convention of the American Speech-Language-Hearing Associa-
tion, Anaheim, CA, Nov. 1991.

P. Howell, S. Sackin, and K. Glenn, “Development of a two-
stage procedure for the automatic recognition of dysfluencies in
the speech of children who stutter: II. ANN recognition of rep-
etitions and prolongations with supplied word segment markers,”
Journal of Speech, Language, and Hearing Research, 1997.

E. Noth, H. Niemann, T. Haderlein, M. Decher, U. Eysholdt,
F. Rosanowski, and T. Wittenberg, “Automatic stuttering recog-
nition using hidden markov models,” in Proceedings of the 6th In-
ternational Conference on Spoken Language Processing (ICSLP-
00), Beijing, Oct. 2000.

P. A. Heeman, A. McMillin, and J. S. Yaruss, “Computer-assisted
disfluency counts for stuttered speech,” in Proceedings of the 12th
Annual Conference of the International Speech Communication
Association, Florence Italy, Aug. 2011, pp. 1324-1327.

G. Riley, Stuttering Severity Instrument, 4th ed., 2009.

J. S. Yaruss, M. Max, R. Newman, and J. Campbell, “Comparing
real-time and transcript-based techniques for measuring stutter-
ing,” Journal of Fluency Disorders, vol. 23, pp. 137-151, 1998.

S. Sutton, R. Cole, J. de Villiers, J. Schalkwyk, P. Vermeulen,
M. Macon, Y. Yan, E. Kaiser, R. Rundle, K. Shobaki, P. Ho-
som, A. Kain, J. Wouters, M. Massaro, and M. Cohen, “Universal
speech tools: the CSLU toolkit,” in Proceedings of the 5th In-
ternational Conference on Spoken Language Processing (ICSLP-
98), Sydney Australia, November 1998, pp. 3221-3224.

P. A. Heeman, A. McMillin, and J. S. Yaruss, “An annotation
scheme for complex disfluencies,” in Proceedings of the 9th In-
ternational Conference on Spoken Language Processing (ICSLP-
06), Pittsburgh PA, Sep. 2006, pp. 1081-1084.

D. B. Fry, “Simple reaction-times to speech and non-speech stim-
uli,” Cortex, vol. 11, no. 4, pp. 355-360, 1975.

P. Lamere, P. Kwok, E. Gouvea, B. Raj, R. Singh, W. Walker,
M. Warmuth, and P. Wolf, “The CMU sphinx-4 speech recogni-
tion system,” in Proceedings of the IEEE International Confer-

ence on on Acoustics, Speech and Signal Processing, Hong Kong,
2003.

D. Rybach, C. Gollan, R. Schiilter, and H. Ney, “Audio segmen-
tation for speech recognition using segment features,” in /JCASSP,
2009, pp. 4197-4200.

P. A. Heeman, “Modeling speech repairs and intonational phras-
ing to improve speech recognition,” in Automatic Speech Recog-
nition and Understanding Workshop, Keystone Colorado, De-
cember 1999. [Online]. Available: http://www.cse.ogi.edu/ hee-
man/papers/97.asru.html

D. Wechsler, Wechsler Memory Scale - Third Edition Manual, San
Antonio, TX, 1997.

2655

[19]

[20]

B. Roark, M. Mitchell, J.-p. Hosom, K. Hollingshead, and
J. Kaye, “Spoken language derived measures for detecting mild
cognitive impairment,” in IEEE Transactions on Audio, Speech &
Language Processing, 2011.

R. Lunsford and P. A. Heeman, “Using linguistic indicators of dif-
ficulty to identify mild cognitive impairment,” in Proceedings of
the 17th Annual Conference of the International Speech Commu-
nication Association, Dresden Germany, Sep. 2015.

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index

	Abstract Book
	Abstract Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Peter A. Heeman
	Also by Rebecca Lunsford
