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Abstract

Low resourced languages suffer from limited training data and
resources. Data augmentation is a common approach to in-
creasing the amount of training data. Additional data is syn-
thesized by manipulating the original data with a variety of
methods. Unlike most previous work that focuses on a single
technique, we combine multiple, complementary augmentation
approaches. The first stage adds noise and perturbs the speed
of additional copies of the original audio. The data is further
augmented in a second stage, where a novel fMLLR-based aug-
mentation is applied to bottleneck features to further improve
performance. A reduction in word error rate is demonstrated on
four languages from the IARPA Babel program. We present an
analysis exploring why these techniques are beneficial.

Index Terms: speech recognition, deep neural networks, data
augmentation

1. Introduction

When training data is limited—whether it be audio or text—the
obvious solution is to collect more data from similar sources
[1, 2]. If the language is not widely spoken, collecting addi-
tional resources may be difficult. Another alternative is to sim-
ulate data [3, 4]. A common tactic in the robustness community
to improve performance on unseen noise and microphone con-
ditions is to augment the original data [5]. Given the original
data, additional copies are generated through random perturba-
tions and through augmentation with additional signals.

Most previous work focuses on a single type of augmenta-
tion at a time: reverberation [6], noise addition [7], and speaker
characteristics [8]. Some more recent work has combined mul-
tiple augmentation techniques. Ragni et. al [9], combined semi-
supervised training and vocal tract length perturbation (VTLP).
The recent ASpIRE Challenge [10] saw several teams achieve
success with data augmentation. Peddinti et. al [11] combined
reverberation and volume perturbation, and Hsiao et. al [12]
added both artificial noise and reverberation to the original data.
VTLP and a speaker-based augmentation were combined in two
stages by Cui et. al [13].

We also combine multiple techniques at multiple stages to
further improve performance. We use a two-stage approach
to increase the types of augmentation and the efficiency with
which they can be added to our standard pipeline. The acoustic
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data is augmented by adding noise and then perturbing the speed
of the audio. Both techniques are simple to apply. Features are
derived from the augmented data and used to train a bottleneck
feature extractor. The bottleneck features are augmented in the
second stage with a novel fMLLR-based approach. The two-
stage approach provides an improvement over either technique
individually and offers flexibility.

2. Data Augmentation

Our goal is to produce a simple pipeline, where each additional
copy of data is augmented in multiple ways. Two techniques
described below: noise augmentation and speed perturbation.
Other approaches were also tested, but did not produce a con-
sistent gain in combination with other techniques.

2.1. Noise Augmentation

Noise augmentation has long been used to improve the robust-
ness of acoustic models. Most of this work has been applied
to GMMs [14, 15], but the same approaches can be applied to
DNNs [16]. Some datasets have pre-specified multi-style train-
ing sets that have been artificially created [17]. Noise sources
are added to the original data at a random SNR. This increases
the variance of the resulting models. The motivation is to im-
prove recognition in unseen conditions.

As the IARPA Babel project typically does not allow out-
side audio sources, we collected noise sources from the Babel
data itself. Non-speech segments from the previous year’s lan-
guages were identified based on speech activity detection. Since
the data itself is often quite noisy, we assumed any non-speech
segments could be valid candidates for noise sources. This
method has the additional benefit of ensuring the noise data is
similar to the conditions found during testing, though prelimi-
nary experiments with other noise sources produced similar re-
sults. The augmented datasets were generated by copying the
clean data and adding a random noise sample at an SNR be-
tween 0dB and 20dB; several other SNR ranges were tested,
but did not improve performance. Estimated SNR of the Babel
training set ranges from 0dB to 50dB.

2.2. Speed Perturbation

Ko et al. [18] showed success by manipulating the speed of
the data. They demonstrated a performance improvement over
the more common vocal tract length perturbation (VTLP) tech-
nique [8]. Using the Sox utility [19], the original data is per-
turbed by a warping factor that effects both the frequencies and
the duration of the speech. The speed change is accomplished
by resampling the waveform, which not only changes the dura-
tion, but also scales the pitch, vocal tract length, and all spectral
frequencies by the same factor. Our setup uses a randomly se-
lected warping factor between 0.9 and 1.1 (this was also the
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range used in [18]). We experimented both with other ranges
and using discrete steps, but those did not perform as well.

3. Speaker-Based Augmentation

This first stage of augmentation affects the original audio and is
pushed through feature extraction all the way to the final system.
Previous work has also experimented with using the augmented
data during bottleneck feature training only [20]. Another ap-
proach from previous work is to augment the speaker-adapted
features [21]. We explore this technique at a second stage—
after bottleneck features have been trained. The usual motiva-
tion is to simulate the speech coming from a different speaker.

One recent technique shown to be successful on Babel data
is Stochastic Feature Mapping (SFM) [21]. Two linear transfor-
mations are applied to the features. Speaker-dependent models
are estimated for all training speakers. The parameters of the
training speaker are first mapped to the feature space of a ran-
dom other speaker. Then the second transformation maps these
features to the canonical speaker-independent space. The goal is
to simulate the features as having come from a different speaker.

SFM is a well-motivated technique for augmentation, but
it is unclear if the gain is actually from mapping the features
to another speaker’s space. It is possible the gains seen from
SFM are due solely to the perturbations added to the features—
increasing the robustness of the model—and not from the sim-
ulation of additional speakers. In our pipeline, SFM is also an
expensive technique as a separate acoustic model must be gen-
erated for each speaker.

We propose a simpler approach that only perturbs the final
speaker-adapted features without additional computation. For
the additional data, only a small change is made to the system
pipeline. When applying the fMLLR transform to create the
speaker-adapted features, a random speaker’s transformation is
used instead of the true speaker’s transformation. Our moti-
vation is that this simulates the imperfect fMLLR transforma-
tions that can be derived during decoding from inaccurate auto-
matic transcriptions. Regardless of the motivation, this fMLLR-
based augmentation (FBA), provides a realistic perturbation of
the features. The detailed algorithm is shown in Algorithm 1.

Algorithm 1 fMLLR-based Speaker Augmentation (FBA)

Input: set of speaker transformations S, number of speakers n.
Let D be an n x n similarity matrix.

fori=1,...,ndo
forj=1,...,ndo
1S, — 5,112
D; j < exp (4“5502% ! )

end forLet N = Ej Di,j
fory=1,...,ndo
Di7 j = DL j / N
end for
Select index k based on the distribution D; .
Sl{ < Sk
end for
Output: new set of speaker transformations S’

We test several variations of this approach that differ only in
how we select the random speaker. For each speaker, we com-
pute the Euclidean distance between the fMLLR transformation
from every other speaker. Our informal listening tests confirm
this distance is reasonable. Similar transformations come from
similar speakers and transformations with a large distance typ-
ically come from a speaker of a different gender in a different
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condition. Given the distances, they still need to be transformed

into a similarity. We use the same approach commonly used in

spectral clustering [22], the Gaussian similarity function
—|A-BJ*
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The o value controls the width of the distribution. As o
decreases, dissimilar points move further apart. The similarities
are then normalized to create a probability distribution. Figure 1
illustrates the effect of the o on the cumulative distribution. For
instance, with o = 0.1, the 10% most similar matrices cover
75% of the probability space. Also note that in this case, the
identity matrix covers nearly 40% of the distribution. Now that
we can generate a distribution over the matrices, we can select
a random speaker based on that distribution. The other option
we explore is selecting a random speaker uniformly.
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Figure 1: Cumulative probability of selecting a speaker trans-
formation given o value. Assumes transformations are sorted in
terms of similarity.

4. Experimental Setup

We use the Sage ASR toolkit [23]. Sage is BBN’s newly de-
veloped STT platform that integrates technologies from multi-
ple sources, each of which has a particular strength. In Sage,
we combine proprietary sources, such as BBN’s Byblos [24],
with open source toolkits, such as Kaldi [25], CNTK [26] and
Tensorflow [27]. For example, DNN can be trained using Byb-
los, Kaldi nnetl [28] or nnet2, CNN using Kaldi or Caffé [29],
and LSTM using Kaldi or CNTK. Sage also includes keyword
search from Byblos [30]. The integration of these technologies
is achieved through wrapper modules around major functional
blocks that can be easily connected or interchanged. Sage also
includes a cross-toolkit FST recognizer that supports models
built using the various component technologies.

All experiments are performed on data from the IJARPA Ba-
bel project. We selected four development languages from the
final year of the program: Amharic (IARPA-babel307b-v1.0b),
Guarani (JARPA-babel305b-v1.0c), Igbo (IARPA-babel306b-
v2.0c), and Pashto (IARPA-babel104b-v0.bY). Ambharic is used
as our development language to test augmentation approaches
and setups. For each language, the full language pack (FLP)
is used, containing approximately 40 hours of transcribed au-
dioLexicons are derived using simple G2P rules [31]. Trigram
language models are built only from the transcriptions. Decod-
ing is performed on an additional 10 hours of development data.



Language | Augmentation Type x Copies | WER |

Ambharic none 44.2
Ambaric Speed x 2 44.0
Amharic Noise x 2 434
Ambharic Reverb x 2 43.8
Ambaric Speed x 1, Noise x 1 43.5
Ambaric (Speed+Noise) x 2 42.8
Ambharic (Speed+Noise+Reverb) x 2 434

Table 1: Comparison of multiple augmentation types and com-
binations on Amharic. All augmented models use a total of two
additional copies of the data.

| Language | Model Type | Copies | WER |
Ambharic DNN 0 44.2
Ambharic DNN 1 434
Ambharic DNN 2 42.8
Ambharic CNN 0 45.0
Ambharic CNN 1 44.1
Ambharic CNN 2 43.8

Table 2: Comparison of CNN and DNN models using aug-
mented data. Zero copies refers to the baseline system. Ad-
ditional copies are both noise augmented and speed perturbed.

In previous years, actual term-weighted value (ATWV) was the
primary measure of interest for IARPA Babel program. This
year reduction in WER has been added as a goal. Although—
due to space constraints—we present results on WER only, the
gains on ATWYV are generally larger than the gains in WER,
because word spotting depends more on model robustness.

5. Results

In order to determine the best combination of augmentation
types, we first test them on Ambharic. While the JARPA Ba-
bel data itself is not reverberant, we also tested adding artificial
reverberation in addition to noise and speed augmentation. A
set of artificial room impulse responses (RIR) were generated
[32]. Using these RIR the data was artificially reverberated.

The results in Table 1 contain a subset of combinations that
were tested. All techniques produce a small gain when used in-
dividually, but the combinations are mixed. Best performance is
obtained by combining noise and speed augmentation. For the
remainder of the paper we only consider this combination for
our first stage data augmentation. A wide range of additional
variations can be applied using the previously discussed tech-
niques: varying SNR of added noise, varying the speed factor,
separating the augmentations between copies, etc. More varia-
tions were tried than could be reported in this work, but they all
either resulted in the same or decreased performance.

It has been previously shown that CNNs may be more re-
silient to noise and channel variation [33]. We test whether this
translates to improved performance with data augmentation. Ta-
ble 2 presents results on Amharic using both DNN and CNN
acoustic models. Our CNN setup is similar to the described
DNN setup, except that the top first layers of the DNN are re-
placed by convolutional layers, and the entire system is trained
on filter bank features as opposed to bottleneck features. The
baseline CNN performs worse than the DNN, likely due to the
speaker-adapted features used by the DNN. Both models see a
similar improvement in WER from the data augmentation, but
the absolute performance is still better with the DNN—though
it does demonstrate the results are not dependent on the model.
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[ Language [ Baseline [ One Copy | Two Copies |

Ambharic 44.2 434 42.8
Guarani 46.7 45.6 45.2
Igbo 55.5 54.5 54.3
Pashto 48.1 46.8 47.1

Table 3: Results using the first stage noise and speed augmen-
tation during training for four languages.

| Language [ None [ SFM | FBA; Random | FBA; 0 = 0.2 |

Amharic | 42.8 | 42.6 42.4 422
Guarani 452 | 447 44.9 44.6
Igbo 543 | 54.0 54.1 539
Pashto 47.1 46.7 46.8 46.7

Table 4: Results for applying speaker-based augmentation on
top of the noise and speed augmentation reported in Table 3.
None refers to just using noise augmentation and speed pertur-
bation. SEM [21], and the two FBA approaches use the addi-
tional second stage augmentation.

All further experiments use DNN acoustic models since they
give better performance. It is also simpler to apply the second
stage augmentation when using the DNN.

Table 3 shows results for noise+speed augmentation on four
Babel languages. In all cases, the languages see a significant
reduction in WER from the augmentation. Three of the four
languages benefit from the addition of a second copy of data.
We also tested adding additional copies of data beyond two for
Ambharic, but this produced no further gains. This first stage of
augmentation reduces absolute WER from 1% to 1.5% for the
four languages with two copies of augmented data.

The second stage of augmentation, speaker-based augmen-
tation, modifies the speaker-adapted bottleneck features. Re-
sults are shown in Table 4 for four languages. Note that the
None result still uses two copies of data that are noise+speed
augmented. Three variations of speaker-based augmentation are
compared against results using only the first stage of augmenta-
tion. The value of o was selected to be 0.2 as that produced the
best performance with our preliminary Amharic experiments.

In the best case, FBA decreased WER a further 0.6%, pro-
viding a total absolute improvement over the baseline of 2.1%.
In all cases, the addition of FBA further improves results, but
the random selection performs similarly whether it is uniform
or based on a similarity with the current speaker. The SFM
approach also gives similar results, but requires additional com-
putation. While the additional gains provided by FBA are small,
they come with no additional training cost. On average, the first
stage reduces WER by 1.2% and the second stage produces an
additional reduction of 0.5% absolute.

6. Analysis

It is not obvious why the augmentation produces gains. The
noise augmentation uses noise from the same corpora and we
do not expect a large mismatch between the training and testing
conditions—the greater the mismatch, the greater the gain ex-
pected from data augmentation. The FBA approach to speaker-
based augmentation produces similar gains as the SFM ap-
proach, but without the motivation of simulating additional
speakers. We further analyze the results below.

The results for the development data can be further broken
down based on recording condition. Seven conditions are listed



for each language: car kit, home office landline, home office mo-
bile, microphone, public, street, and vehicle. Since home office
landline is a controlled location, it is unexpected to see large
gains. The microphone condition uses a far field microphone
and is the most challenging condition. Remaining conditions
are mobile phones used in a variety of environments.
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Figure 2: Relative WER reduction versus the baseline system.
Single stage augmentation approaches using one and two copies
of augmented data, and the two stage FBA approach are shown.
Results are broken down based on recording condition.

Figure 2 shows the average improvement in WER for the
augmented systems over the baseline averaged over all four lan-
guages. The gains from noise+speed augmentation are spread
evenly through most conditions; all but home office landline see
at least a 1% absolute reduction in WER. The major outlier is
the microphone result for the system trained on one copy of
additional data; it sees no gain. This discrepancy is alleviated
when the second copy of data is added. However, nearly all of
the gain from adding the second copy of data comes from the
microphone condition. This helps explain why Pashto did not
see an improvement from the second copy. It is the only lan-
guage without any microphone data in the the development set.
Based on this analysis it appears the first stage of augmenta-
tion improves performance across all conditions, but additional
copies are required to improve performance on the more diffi-
cult microphone condition. The second stage of augmentation
gives a consistent gain across conditions.

In order to better understand how the augmented data
is helping, we decoded the training sets for Amharic. The
three training sets—the original data plus the two augmented
copies—are kept separated. First we look at performance using
the GMM models. Figure 3 shows results for each system on
the three training sets. Note that the FBA model is not shown
as the second stage of augmentation is not applied before GMM
training. The baseline model sees a drastic reduction in perfor-
mance when tested on the augmented data. The models trained
on the augmented data show improvements on the augmented
data, but performance on the original data is not affected.

Figure 4 shows similar experiments with the associated
DNN models. Again, the baseline model clearly has trouble
dealing with the augmented data, while the models trained on
the augmented data see large reductions in WER. These results
are to be expected when testing on the training data. The sur-
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Figure 3: WER results on Amharic training sets using GMMs.
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Figure 4: WER results on Amharic training sets using DNNs.
If the model has seen the data in training, the bar is filled.

prising result is that training on augmented data improves per-
formance on the original data—the typical motivation for train-
ing on augmented data is to improve performance on unseen
conditions. This is a significant difference in the effects of train-
ing on augmented data for GMM and DNN models.

Adding the second stage of augmentation, speaker-based
augmentation, degrades performance on the three training sets.
It is still better than the baseline model, but significantly worse
than the model using only the noise+speed augmentation. Since
it does improve performance on unseen data, it seems likely it
is performing a function similar to regularization. In future ex-
periments we will compare the FBA technique to other standard
regularization approaches.

7. Conclusions

We presented a two-stage approach to data augmentation. The
first stage combines previously proposed techniques to add
noise and speed perturbation. This first stage augmentation is
used to train all stages of our system. After bottleneck features
have been trained, a second stage of augmentation is used. Bot-
tleneck features are augmented by using a random speaker’s
fMLLR transformation. In all cases the first stage provides
significant gains in performance. The second stage produces
a further reduction in WER. Additional analysis further helps
explain why the augmentation process produces such gains.
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