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Abstract
Estimating the number of speakers in an audio segment is a nec-
essary step in the process of speaker diarization, but current di-
arization algorithms do not explicitly define a prior probability
on this estimation. This work proposes a process for includ-
ing priors in speaker diarization with agglomerative hierarchical
clustering (AHC). It is also shown that the exclusion of a prior
with AHC is itself implicitly a prior, which is found to be geo-
metric growth in the number of speakers. By using more sen-
sible priors, we are able to demonstrate significantly improved
robustness to calibration error for speaker counting and speaker
diarization.
Index Terms: speaker diarization, i-vector, clustering

1. Introduction
Speaker diarization is the process of grouping segments of
speech from the same speaker, often referred to as determining
who is speaking when. Typically, this task is performed with-
out any knowledge of who the speakers are or even how many
speakers there are. As a result, estimating the number of speak-
ers (or clusters) is a necessary step in the diarization process.

There are numerous approaches for determining the num-
ber of speakers from a set of unclustered frames or segments of
speech. In many cases, but not all, these segments are repre-
sented as i-vectors [1], a fixed-dimensional representation of an
audio segment that performs well for speaker recognition and
language identification. Ideally, we would partition these seg-
ments by computing the full posterior over the entire partition
space, but this has been shown to become quickly infeasible for
even a small number of segments [2]. Instead, a clustering al-
gorithm in i-vector space is typically preferred. Prior work has
explored K-means [3], Hierarchical Direchlet Process Hidden
Markov Modelling (HDP-HMM) [4], spectral clustering [5],
Variational Bayes Expectation Maximization Gaussian Mixture
Modelling (VBEM-GMM) [6], mean shift [7], and agglomera-
tive hierarchical clustering (AHC) [8].

However, the role of speaker priors has only been consid-
ered for a few of these methods. In some cases, a prior can
be defined via hyperparameters (such as in HDP-HMM and
VBEM-GMM), but this approach also requires costly iterative
updates to converge on a solution. In other approaches, such as
mean shift and AHC, the number of speakers is indirectly de-
termined by a parameter (the bandwidth in mean shift or stop-
ping criterion in AHC) that does not obviously relate to any
particular prior. In some work, fragments of prior information
were included by forcing a decision of at least two speakers (e.g.
[6]), or by forcing a decision of exactly two speakers (e.g. [8]).
But, otherwise, prior probabilities for number of speakers have
played only a small role in speaker diarization.

In the work that follows, we define the process for includ-
ing speaker priors for AHC, which is preferred for its speed
and efficiency. First, in Section 2, we briefly describe the AHC
diarization systems to be used in later experiments. Then, in
Section 3, we describe the process for explicitly defining priors
in AHC, as well as deriving the implicit prior in AHC. Sec-
tion 4 presents results for measuring performance at different
calibration shifts for speaker counting and speaker diarization,
followed by concluding remarks.

2. AHC Diarization
AHC is a reasonable choice for speaker diarization with i-vector
clustering because it is efficient and independent of initializa-
tion [8, 9] . Furthermore, unlike other clustering methods that
fix the number of speakers explicitly (or fit multiple models in
parallel), AHC instead merges clusters until there are no longer
any pairs deemed to originate from the same speaker, essentially
breaking the clustering into a series of speaker recognition de-
cisions. The drawback to AHC is that, in order to achieve its
efficiency and replicability, the process is greedy. Instead of
considering all possible partitions of the segments (as discussed
in [2]), AHC only considers a single partitioning at each level:
merging the nearest clusters from the previous level.

I-vector clustering with AHC for diarization typically fol-
lows several steps. First, the speech is broken into short seg-
ments (roughly 1-2 seconds) based on marks from speech activ-
ity detection. Second, an i-vector is extracted for each of these
segments, and a matrix of similarity scores is then computed
over all i-vector pairs. AHC begins with all segments as sep-
arate clusters and then uses the score matrix to greedily merge
them until a stopping criterion is met (usually either a specified
number of clusters or a maximum distance between clusters).

Recent work has shown that scoring with Probablistic Lin-
ear Discriminant Analysis (PLDA) [10] provides an improve-
ment over cosine scoring [9], and so this is the scoring process
we will use in the work that follows. We will also consider two
types of i-vector extraction. In the first type (called acoustic
i-vectors), the acoustic features are clustered with an unsuper-
vised universal background model (UBM), which is then used
to compute the frame-level sufficient statistics for i-vector ex-
traction [9]. In the second type (called DNN i-vectors), a DNN
trained to map acoustic features to senone posteriors is used to
define the zero-order statistics, which are then used in the suffi-
cient statistics for i-vector extraction [11].

3. Speaker Priors for AHC
We propose explicitly inserting a prior for the number of speak-
ers into the diarization process. However, in order to accom-
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plish this, we must first pose AHC as a probabilistic process.
AHC is deterministic for a given matrix of scores, and so the
proper approach for including a prior for number of clusters
is not immediately evident. It would be possible to include
this sort of information into the stopping criterion of the AHC,
but there is a more direct approach. If we instead soften the
hard decisions in AHC so that the probability of stopping at
step k (called λk) is p(HD|λk), and the probability of merging
and continuing is p(HS |λk), then priors can be naturally intro-
duced. In this process, stopping at step k means a decision for
N − k speakers, if N is the total number of segments (or levels
in AHC).

A decision of N − k speakers requires merges for the first
k − 1 steps followed by a stop at step k.

p#(N − k) =

k−1∏

i=0

[
p(HS |λi)

]
p(HD|λk) (1)

By observing p(HS |λk) = 1−p(HD|λk), the product of same
hypotheses can be restated in terms of the prior distribution.

k−1∏

i=0

p(HS |λi) =

k−2∏

i=0

[
1− p(HD|λi)

][
1− p(HD|λk−1)

]

=

k−2∏

i=0

[
1− p(HD|λi)

]
− p#(N − k − 1)

= 1−
k−1∑

i=0

p#(N − i)

Reinserting this summation into Eq. (1) defines the stopping
probability at step k in terms of a speaker prior p#.

p(HD|λk) =
p#(N − k)

1−
k−1∑

i=0

p#(N − i)

(2)

We can now introduce evidence to the process, which, in
the case of diarization with AHC, is the probability that the two
most similar clusters are from different speakers. So, our goal
now is to determine the probability of a decision of continuing
at step λk given evidence xk. Using Bayes’ Rule, we obtain

p(HD|λk, xk) =
p(xk|HD, λk)p(HD|λk)∑

H
p(xk|H, λk)p(H|λk)

(3)

The diarization systems described above use PLDA scoring for
determining the log likelihood ratio lk of the two most similar
clusters coming from same or different distributions.

Lk = elk =
p(xk|HS , λk)

p(xk|HD, λk)
(4)

By combining Eqs. (3) and (4), we are able to completely de-
fine the probability of stopping at a particular step of the AHC
process given prior probabilities and PLDA likelihood ratios.

p(HD|λk, xk) =
p(HD|λk)

Lk + (1− Lk)p(HD|λk)
(5)

The posterior speaker probabilities can also be updated to in-
clude all evidence x, via Eq. (1).

p#(N − k|x) =

k−1∏

i=0

[
1− p(HD|λi, xi)

]
p(HD|λk, xk)

Finally, we wish to return to a deterministic process, as we
began. When the stopping probabilities in Eq. (5) are forced to
0 if below 0.5, or to 1 if above 0.5, then this clustering exactly
replicates the deterministic outcome from AHC. In practice, we
smoothly approximate the binarization with a sigmoid function.

3.1. Implicit AHC Prior

The systems described above in Section 2 for speaker diariza-
tion with AHC clustering do not specifically employ any partic-
ular prior. However, as is often the case, the absence of a prior
is implicitly a prior itself. Typically, the absence of a prior is
equivalent to a flat prior, but this is not the case for AHC. In-
stead, the absence of prior is equivalent to a flat stopping prob-
ability at all steps of the merge (i.e. p(HD|λk) = 0.5, ∀k).

Plugging this into Eq. (1) shows that the implicit AHC prior
grows geometrically with the number of speakers m, which is
almost certainly a poor choice.

p#(m) = 2(m−N)
, where m = N − k (6)

While the ideal prior will vary for different corpora, it is diffi-
cult to imagine a circumstance where the most likely number
of speakers is equal to the number of 1-2 second segments in
the duration of the conversation. This offers promise to the po-
tential for improvement from using Eq. (5) to include a more
sensible prior.

3.2. Calibration Error with Priors

Score calibration interprets likelihood ratios as probabilities
[12]. In [9], unsupervised calibration from in-domain, unla-
beled data was used successfully for PLDA score calibration
for AHC diarization. However, this process required advance
access to the evaluation data (without labels) in order to learn
the parameters, which may not always be possible.

While true logistic regression calibration learns both a scale
and shift (or bias) parameter in log-space, in the case of the un-
supervised calibration in [9], only a shift parameter was learned.
In this sense, the process determines a threshold rather than a
full calibration function. So, for simplicity, we will only con-
sider the shift parameter here (referred to as β), which can be
easily factored into Eq. (5).

p(HD|λk, xk) =
p(HD|λk)

e−βLk + (1− e−βLk)p(HD|λk)
(7)

Note that, since β is a linear shift to lk, it must be exponentiated
and multiplied with Lk here.

The relationship in Eq. (7) between the threshold, the prior
stopping probability, and the stopping probability with evidence
will drive the subsequent experiments.

4. Experiments with Speaker Priors
In order to explore the role of speaker priors in diarization, we
examine several experiments with the LDC CALLHOME cor-
pus, a collection of multi-lingual telephone data with conversa-
tions between 2-7 speakers. The true distribution of number of
speakers is shown in Fig. 1 (the oracle prior).

The acoustic and DNN diarization systems were trained as
described in [9] and [11], respectively. Also, the stopping prob-
abilities in Eq. (5) were roughly binarized with a sigmoid func-
tion centered at 0.5 and with a scaling parameter of 1000. Other
sigmoid scaling parameters were also considered, but the stabil-
ity of a sharper sigmoid was found to be preferable, likely due to
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Figure 1: Prior distributions used in the experiments. The ora-
cle distribution is the true distribution of CALLHOME.

the lack of a scaling in the calibration. The number of speakers
was then selected according to the maximum in the posterior.

4.1. Expected Posterior with Calibration Error

A first experiment in examining priors was to consider the ef-
fect of calibration error in the absence of evidence, which was
achieved by setting all likelihood ratios to 1 in Eq. (7) (i.e.,
Lk = 1, ∀k). Without evidence, the calibration error only
serves to modify the prior, and so this first experiment exam-
ines the effect of calibration on the prior itself.

In this experiment and others to follow, we considered five
different priors:

• Implicit - The implicit prior (Eq. (6)).

• Flat19 - Flat prior probability across 1-9 speakers.

• GeoDecay - Geometric decay p#(m) = 2−m.

• Flat27 - Flat prior probability across 2-7 speakers (the
oracle range of outcomes for the corpus).

• Oracle - The oracle CALLHOME prior.

These speaker priors are converted to a prior stopping probabil-
ity at each level via Eq. (2) and then inserted into Eq. (5) to
compute stopping probabilities. In all cases, more than 9 speak-
ers was set to zero probability for simplicity. Note that the last
two priors (flat27 and oracle) utilize some degree of oracle in-
formation. Each of these distributions is shown in Fig. 1.

Figure 2 shows the cross-entropy of the modified prior and
the true CALLHOME oracle prior as a function of calibration
shift as a means of measuring the difference between the distri-
butions. A negative shift indicates a tendency toward a smaller
number of speakers, while a positive shift encourages more
speakers. The implicit prior has the largest cross-entropy at all
positive shifts and for small magnitude negative shifts as well.
For large negative shifts, the geometric decay prior is worst, be-
cause it already gives a great deal of mass to one speaker, and so

Figure 2: Cross-entropy of various priors and the oracle prior
as a function of calibration shift. Priors in gray utilize oracle
information.

a negative shift quickly feeds this tendency. The flat27 and ora-
cle priors, on the other hand, are comparatively stable for large
negative shifts, because they give no mass to a single speaker.

However, for positive shifts, it is clear that priors that give
less weight to more speakers (here, the oracle and geometric
decay priors) are more stable. But, for these shifts, even a flat
prior is significantly preferable to the implicit prior.

4.2. Speaker Counting with Calibration Error

For a second experiment, we explored speaker counting on
the CALLHOME corpus as a function of calibration shift. In
this case, AHC diarization was used to estimate the number of
speakers for a particular conversation, and error was measured
as the root-mean-square (RMS) of the absolute error. This error
RMS for the acoustic and DNN diarization systems is plotted
for the five different priors in Fig. 3. It is worth noting that
the unsupervised calibration algorithm determined a calibration
threshold of -1.88 for the acoustic i-vectors and -1.40 for the
DNN i-vectors, which are marked in Fig. 3

A first observation is that the acoustic and DNN systems
behave very similarly. Also, it is noteworthy that for negative
log shifts of larger magnitude (which corresponds to estimating
fewer speakers), most priors behave identically. The only true
difference at the negative end of the graph is that the flat27 prior
and oracle prior do not increase in error for very large negative
shifts, due to zero probability for single speaker decisions.

However, the priors show significantly different behaviors
for positive log shifts. The implicit prior increases in error at
a lower calibration shift than any other prior, and it saturates
at maximum error quickly. This observation aligns with the
derivation from Section 3.1 that the implicit prior of AHC is
geometric growth, and so it would be expected to predict more
speakers for a lower calibration shift than other priors.

The errors for the flat priors increase for positive shifts,
though the climb is much slower than for the implicit prior.
Also, the exclusion of speakers greater than 7 from the flat27
prior leads to a lower maximum error, but the two flat priors are
otherwise nearly identical in error. The geometric decay and or-
acle priors both stay at a lower error for a wider range of shifts,
and also climb slowest.

In general, it is easy to see that speaker counting is more
robust to threshold variation for increasingly accurate priors.
Improving the prior also improves the optimal performance, but
the difference is reasonably small. However, the range of scores
for which the performance is near optimal significantly widens
as the prior improves. It is also worth noting that, for this exper-
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(a) Acoustic

(b) DNN

Figure 3: RMS of the error for predicted number of speakers as
a function of calibration shift for the acoustic and DNN diariza-
tion systems with several priors. Priors in gray utilize oracle
information and the thresholds from unsupervised calibration
are marked along with no calibration (0).

iment, a reasonably selected geometric decay is not obviously
worse than the true oracle information, with the exception of the
small error difference for extremely negative shifts.

4.3. Diarization with Calibration Error

We also examined the relationship of priors and calibration for
the diarization itself, with results shown in terms of diariza-
tion error rate (DER), which combines miss, false alarm, and
speaker confusion errors, in Fig. 4. However, in these experi-
ments, we observed the typical practice of using oracle speech
activity marks, and so the DER in Fig. 4 only corresponds to
speaker confusion error.

In many ways, these results follow similar patterns to the
speaker counting results in the previous section, especially for
positive log shifts. The implicit prior increases in error for the
lowest shift, followed by the flat priors, while the geometric
decay and oracle priors are most resistant to increases in error
for positive log shifts.

However, for negative shifts, the cost of bad priors is more
clearly shown here than for speaker counting. In this case, the
geometric decay performs at a roughly 5% absolute DER worse
than all other priors for most negative log shifts. This is be-
cause the geometric decay prior gives the greatest mass to es-
timating a single speaker, and so diarization with that prior is
most prone to merging all segments into a single speaker. The
alternate version of this effect can also be seen for the flat27 and
oracle priors, which hardly increase in error at all, even for the
largest negative shifts, because merging all segments to a single
speaker is prohibited by those priors.

So, in this case, it is clearly seen that, while good informa-

(a) Acoustic

(b) DNN

Figure 4: DER as a function of calibration shift for the acoustic
and DNN diarization systems with several priors. Systems in
gray utilize oracle information, and the thresholds from unsu-
pervised calibration are marked along with no calibration (0).

tion in the prior probabilities can significantly widen the thresh-
old range for optimal performance, bad information in the prior
probabilities can hurt performance.

It is also worth noting that Fig. 4 is also strikingly similar to
Fig. 2, indicating that the diarization results are indeed related
to similarity between the oracle and realized prior.

The thresholds from unsupervised calibration (-1.88 for
acoustic and -1.40 for DNN) are also reasonable choices for all
priors except the geometric decay, but, as the priors improve,
their optimal bowl widens towards and beyond a shift of 0. And
so, it appears that improved knowledge of the speaker distribu-
tion can help mitigate a poor threshold, but it also appears that
the value of improved priors is largely neutralized if an ideal
threshold is selected.

5. Conclusion
This work derived the role of speaker priors in speaker diariza-
tion with AHC, and, given this understanding, showed that the
absence of a prior is in practice a prior that grows geometrically
with number of speakers. It was subsequently shown that incor-
porating more reasonable priors increases stability for speaker
counting and speaker diarization to errors from inaccurate cali-
bration. This development is especially important if in-domain
calibration, either supervised or unsupervised, is not accurate
(or possible). It is also possible that partial information may be
known in advance, and this approach allows the incorporation of
that knowledge as well. The work presented here suggests that
limited knowledge of the speaker distribution can significantly
improve performance in the face of suboptimal calibration, even
if that limited knowledge is something as simple as a flat prior.
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