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Abstract
This document intends to present AUT speaker recognition sys-
tem submitted to SITW (Speakers in the Wild) speaker recogni-
tion challenge. This challenge aims to provide real world data
across a wide range of acoustic and environmental conditions in
the context of automatic speaker recognition so as to facilitate
the development of new algorithms. The presented system is
based on the state-of-the-art i-vector/PLDA and source normal-
ization techniques. The system has been developed on publi-
cally available databases and evaluated on the data provided by
SITW challenge. Taking advantage of the challenge develop-
ment data, our experiments indicate that source normalization
can help speaker recognition system to better adapt to the eval-
uation condition. Post evaluation analysis is conducted on the
conditions of SITW database.
Index Terms: speaker recognition, i-vector, probabilistic linear
discriminant analysis, source normalization, SITW challenge

1. Introduction
The main theme in the SITW speaker recognition challenge [1]
is to use the data acquired without constrain on recording equip-
ment and environmental conditions for the task of speaker de-
tection. The database contains speech utterances from 299 well-
known public figures on open-source media channels which of-
fers considerable mismatch in audio conditions [2]. Any noise,
reverbration, overlapping speech, laughter and acoustic artifacts
in audio files are natural and there is no constrain on the dura-
tion of speech utterances. Moreover, unlike most of available
databases in the field of text-independent speaker verification,
this database has been released free of charge for research pur-
poses.

Speaker verification systems have been tailored to conver-
sational telephony speech due to the availability of an abun-
dance of corresponding data for system development. The ma-
jority of these databases are focused on constrained conditions
such as clean microphone or telephone speeches. This makes
robust speaker verification challenging during evaluation in un-
constrained conditions where any kind of natural degradation
is presented in audio files. This mismatch motivates us to uti-
lize recent advances in source normalization [3] to bridge the
mismatch between development and evaluation conditions.

In recent years speaker verification systems based on i-
vector features [4] have yielded state-of-the-art performance.
This fixed-length and low-dimensional feature vector captures
speaker specific information from any arbitrary speech segment.
The sufficient statistics of i-vectors can be extracted from GMM
or phonetically aware DNN posteriors of frame-level features
[5] such as MFCC or more recently bottleneck features (frame-
level features extracted from a phonetically aware DNN with
a special bottleneck layer) [6]. The significant performance

gain obtained using DNN is due to the incorporation of speech
content into i-vector modeling. However, any variability due
to acoustic and environmental conditions is still captured by
i-vectors. In order to robustly compensate for these variabil-
ity, inter-session compensation techniques such as Within-Class
Covariance Normalization (WCCN) [7], Linear Discriminant
Analysis (LDA) and Probabilistic LDA (PLDA) [8] have been
developed.

Source normalization was recently developed to compen-
sate for speech source variation through improving the estima-
tion of within-speaker scatter matrix from a training database
with insufficient variety of speaker utterances from different
sources [3]. The within-speaker variability is computed as the
residual total variability in i-vector space that is not captured
by between-speaker variability. The between speaker variabil-
ity is then computed on a source conditioned basis to remove
the bias toward a specific source. This technique has been suc-
cessfully incorporated into WCCN as well as LDA which offers
significant improvement in cross-speech source conditions [3]
[9] [10].

The AUT system submission to SITW speaker recognition
challenge is based on i-vector/PLDA framework (Figure 1). The
system has been developed on publically available databases as
well as the development portion of the SITW database, and eval-
uated on the evaluation portion of the SITW database. We have
incorporated Source-Normalized WCCN (SN-WCCN) [3] as an
i-vector pre-processing stage prior to PLDA modeling. In order
to mitigate the adverse bias attributed to the mismatch condition
of available databases and that of SITW database, we consider
the development portion of the SITW database as a different
source of variability. Due to the fact that the development and
evaluation portion of the SITW database represent similar con-
ditions, it is expected that SN-WCCN results in better adapta-
tion of the system to the evaluation condition.

We outline in this paper the system and experimental results
of the submitted system as well as post evaluation analysis. Sec-
tion 2 describes our speaker recognition system. In Section 3,
we describe experimental evaluation on SITW data. Finally we
present some post evaluation analysis of the data in Section 4.

2. Speaker Recognition System
In this section we will provide a description of the main com-
ponents of AUT speaker recognition system including i-vector
extraction, pre-processing, modeling and scoring. A schematic
block diagram of the system is depicted in Figure 1.

2.1. i-Vectors

i-Vectors are low-dimensional representation of GMM super-
vectors in a subspace spanned by the columns of a low-rank
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Figure 1: Block diagram of the AUT speaker recognition system.

rectangular matrix [4], entitled total variability matrix, which
preserves characteristics of speaker and inter-session variabil-
ity. Mathematically, for a given speaker utterance s the adapted
supervector can be formulated as

s = m + Tw + ε, (1)

where m is the Universal Background Model (UBM) super-
vector, essentially a speaker-independent GMM supervector, w
with standard normal distribution is referred to as the i-vector,
and ε is the residual term which account for the variability not
captured by T. The extraction of i-vectors in the proposed sys-
tem is based on Baum-Welch statistics calculated for a given
utterance with respect to UBM components and speech frame-
level Mel-Frequency Cepstral Coefficients (MFCC). Inspired
by the success of DNN models in automatic speech recogni-
tion (ASR) recently, it is also possible to compute the sufficient
statistics in a supervised fashion (e.g. incorporating phonetic
information) using phonetically aware DNN senone posteriors
of frame-level features [5]. Another approach is the use of DNN
for extracting phonetically aware frame-level features called
Bottleneck Features (BF) with the bottleneck being a small hid-
den layer usually at the end of the network [6] and use them in
i-vector extraction process.

2.2. Pre-processing

In order to achieve the state-of-the-art performance, a num-
ber of techniques have been proposed as pre-possessing steps
prior to PLDA modeling. The common pre-processing includes
Within-Class Covariance Normalization (WCCN) [7] followed
by length normalization of i-vectors [11]. However, the way
WCCN estimates the within-speaker scatter matrix does not ad-
equately represents the directions of variation due to the mis-
match condition of development and evaluation databases. In
order to mitigate the adverse bias attributed to this mismatch, we
proposed to use Source-Normalized WCCN (SN-WCCN). The
source to be normalized in this context is different databases
used during system development. If we consider the develop-
ment portion of the SITW database as a different source of vari-
ability, we expect the speaker recognition system to better adapt
to the evaluation condition as the development and evaluation
portion of the SITW database represent similar conditions.

2.2.1. Source-Normalized WCCN (SN-WCCN)

Source normalization is an effective technique to com-
pensate for speech source variation (i.e. microphone vs
telephone sourced speech) in state-of-the-art i-vector/PLDA
speaker recognition system [3]. Source-Normalized WCCN
(SN-WCCN) [3] can be implemented by using the source-
normalized within-speaker scatter matrix ŜW which is esti-
mated as the variability not captured by the between speaker
scatter matrix as

ŜW = ST − ŜB . (2)

where ST is the total scatter matrix and ŜB is the normalized
between-speaker scatter matrix which are formulated as,

ST =

N∑
n=1

wnwn
T , (3)

where N is the total number of i-vectors available for develop-
ment (assuming zero-mean i-vectors), and

ŜB =

K∑
k=1

Sk∑
s=1

Nk
s (mk

s −mk)(mk
s −mk)

T
. (4)

where K is the number of sources available in development
data, Sk is the number of speakers available for source k, mk

s

is the mean of Nk
s i-vectors from speaker s and source k and

finally mk is the mean of i-vectors for source k.

2.2.2. Length normalization

Due to Gaussian assumption made by PLDA, it has been shown
that length normalization of i-vectors can approximately Gaus-
sianize their distribution [11]. This has been shown to im-
prove the performance of Gaussian PLDA to that of heavy-
tailed PLDA [12].

2.3. Probabilistic Linear Discriminant Analysis (PLDA)

Probabilistic LDA (PLDA) provides a powerful mechanism
to distinguish between-speaker variability which characterizes
speaker information from other sources of undesired variabil-
ity that characterizes distortions. However, to achieve this, it is
required to provide PLDA with enough labeled data which con-
tain multiple utterances of a speaker under different distortions.
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A standard Gaussian PLDA assumes that an i-vector w, is
modeled according to

w = m + Vy + z. (5)

where, m is the mean of i-vectors, y is the speaker latent vari-
able with standard normal prior and the residual z is normally
distributed with zero mean and full covariance matrix Σz . In
order to estimate the parameters of the model (V,Σz), PLDA
uses the expectation-maximization (EM) algorithm [8].

After parameter estimation, for each two trial i-vectors w1

and w2, the verification score will be computed using the log
likelihood ratio of the hypothesis Hs, that both i-vectors are
from the same speaker and the hypothesisHd, that they are from
two different speakers,

score = log
p(w1, w2|Hs)

p(w1, w2|Hd)
. (6)

Considering the Gaussian assumption, the PLDA score can be
computed in closed-form solution

score = logN ([w1
w2

]; [mm], [ST
SB

SB
ST

])

− logN ([w1
w2

]; [mm], [ST
0

0
ST

])
. (7)

where, SB = VVT and ST = SB +Σz . For a clear exposition
and a fast method to compute the score we refer you to [11].

3. Experiments
3.1. Experimental protocol

Experiments were performed on the SITW16 speaker recogni-
tion challenge database [2]. The database includes two non-
overlapping portions of development and evaluation. However,
the conditions observed in both portions are similar. There are
119 and 180 target speakers presented in development and eval-
uation portions respectively. Speech data were collected from
a variety of microphone (podium, handheld, lapel, video and
studio) types and degradation (clean, noise, codec, phone, re-
verb) conditions. Evaluation protocol is based on the challenge
evaluation plan [1]. There were 6 trial conditions which are
formed by different combination of enrollment (Core, Assist,
AssistClean) and test (Core, Multi) conditions. The Core condi-
tion contains contiguous speech segment from a target speaker
whereas in Assist, AssistClean or Multi, there might be more
speakers including the target speaker. Annotations for target
speaker is provided in Assist and AssistClean conditions but
not for Multi condition with the aim of minimizing the labor
intensive task of manual annotation. Table 1 summarizes trial
conditions. Only results on the first three conditions including
the required Core-Core set of trials, are reported in this paper.

Table 1: Description of the 6 conditions of the evaluation por-
tion of SITW database.

enrolment test #tgt trials #imp trials
Core Core 3, 658 718, 130
Assist Core 18, 444 3, 546, 040
AssistClean Core 3, 076 631, 048
Core Multi 10, 045 2, 000, 638
Assist Multi 34, 596 6, 711, 932
AssitClean Multi 5, 828 1, 194, 400

3.2. System configuration

The system has been trained using publically available
databases including LDC releases of Switchboard Cellular Part
II (SWBC2), NIST speaker recognition evaluation (SRE) 2004,
2005 and 2008 databases. For UBM and total variability matrix
training, we used SWBC2, NIST SRE04 and SRE05. These
data include 15740 speech segments from 1193 speakers. For
SN-WCCN and PLDA modeling we included data from NIST
SRE08. Therefore, training of both SN-WCCN and PLDA has
been performed on 26616 speech segments from 2513 speakers.

For acoustic features, we used 20 MFCC features along
with first and second order derivatives. These features were then
passed through an energy based speech activity detector, fol-
lowed by a cepstral mean and variance normalization (CMVN).
We have trained a full covariance, gender-independent UBM
model with 2048 Gaussians. We then trained a 500-dimensional
i-vector extractor using the open-source Kaldi software [13].
The parameters of the PLDA model were tuned using the SITW
development protocol and was set to 200-dimensional subspace
for the eigenvoice latent components.

3.3. Calibration

In litrature, the performance of speaker recognition is usu-
ally reported in terms of calibrated-insensitive equal error rate
(EER) or minimum decision cost function (Cmin

det ). It is only
recently that it was required to submit scores as calibrated log-
likelihood ratio in NIST SRE12. However, in real applications
of speaker recognition there is a need to present recognition re-
sults in terms of calibrated log-likelihood-ratios. We have uti-
lized BOSARIS Toolkit [14] for calibration of scores. Cmin

det

provides an ideal reference value for judging calibration. If
Cdet−Cmin

det is minimized, then the system can be said as to be
well calibrated. To evaluate the calibrated performance of the
speaker recognition system we can also use calibrated-sensitive
criterion Cllr which is the cost of log-likelihood ratio and mea-
sures calibration over the entire range of effective priors [15].

3.4. Performance metrics

Several performance measures are used to determine system
performance as indicated in the SITW16 evaluation plan. The
primary metric for SITW challenge is based on the following
detection cost function

Cdet = Cmiss × Pmiss × Ptar + Cfa × Pfa × (1− Ptar).
(8)

Equal costs between miss and false alarms (Cmiss = Cfa =
1.0) has been used and target prior was set to Ptar = 0.001.
In calculation of Cdet, an optimal theoretical threshold equal to
6.90675 can be applied to calibrated log-likelihood ratio scores
to determine Pmiss and Pfa for performance reporting. Other
metrics including, cost of log-likelihood ratio Cllr , equal error
rate (EER) and minimum decision cost function Cmin

det are also
used to report performance. An alternative performance mea-
sure, average R-precision (R̄prec) which accounts for the pro-
portion of relevant test segments for a given target speaker has
been introduced for performance reporting.

4. Results and Discussion
Table 2 summarizes the system results for different conditions
of both the development and evaluation portion of the SITW
challenge. From the results, we can make the following obser-
vations. First, the lower performance in development portion
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Table 2: Performance comparison on different conditions of both development and evaluation portion of the SITW16 database with
post evaluation improvement. The results are shown for both WCCN and SN-WCCN.

Development Evaluation

Condition EER Cdet Cmin
det Cllr R̄prec EER Cdet Cmin

det Cllr R̄prec

WCCN
Core-Core 11.30 0.7101 0.7097 0.3761 0.6001 10.61 0.7156 0.7087 0.4207 0.5630
Assist-Core 11.44 0.7644 0.7607 0.3812 0.5207 11.29 0.7683 0.7598 0.5024 0.4799
AssistClean-Core 11.13 0.6883 0.6829 0.3694 0.5749 9.66 0.6598 0.6554 0.3910 0.5475

SN-WCCN
Core-Core 10.92 0.7067 0.7023 0.3619 0.6025 10.49 0.6950 0.6793 0.3528 0.5696
Assist-Core 11.06 0.7491 0.7476 0.3669 0.5273 10.65 0.7644 0.7517 0.4545 0.4857
AssistClean-Core 10.49 0.6950 0.6793 0.3528 0.5696 9.00 0.6624 0.6471 0.3514 0.5529

Figure 2: Detection Error Trade-off for different conditions of
evaluation portion of SITW16 using SN-WCCN for adaptation.

of SITW database compared to the evaluation portion is mainly
due to the use of development portion in system training to re-
port results for the evaluation protocol. This is an indication
of mismatch channel between NIST SREs and SITW database
conditions and the system could benefit from the SITW devel-
opment data for better adaptation to the evaluation condition.
Second, the performance of the system could almost always be
improved by applying SN-WCCN instead of WCCN prior to
PLDA. This is due to the ability of SN-WCCN in better adap-
tation of the system to the evaluation condition. We have used
different evaluations of SREs as different sources of variability
to report results on development set. We then added the devel-
opment portion of SITW database as a new source of variability
to report results on evaluation set. The results for the Core-Core
condition indicates much improvement in terms of decision
cost function on the evaluation set. However, in Assist-Core
or AssistClean-Core conditions we see better improvement in
terms of EER. As could be expected in the AssistClean condi-
tion, SN-WCCN is less or not effective since we have a more
clean condition. We have also reported system performance for
different combination of microphone types and degradation tri-
als from the Core-Core condition of the evaluation portion of the

Table 3: System performance for different combination of mi-
crophone types on the core-core condition of the evaluation por-
tion of SITW16 database.

enrol/test podium handheld lapel video studio

podium 0.3750 0.5351 0.4195 0.5154 0.0000
handheld 0.4985 0.6070 0.5334 0.8110 0.6521
lapel 0.5501 0.6421 0.3929 0.5636 0.3512
video 0.8069 0.8763 0.8149 0.8593 0.8780
studio 0.5417 0.6435 0.3757 0.5554 0.2966

Table 4: System performance for different combination of
degradation from the core-core sets of trials of the evaluation
portion of SITW16 database.

enrol/test clean codec noise phone reverb

clean 0.3341 0.5317 0.5009 0.5000 0.4141
codec 0.6957 0.7899 0.7709 0.7649 0.7311
noise 0.3826 0.5837 0.6722 0.5833 0.5112
phone − 0.3333 0.2838 − −
reverb 0.3474 0.5435 0.6247 0.5000 0.4333

SITW’16 database in Table 3 and Table 4 respectively. These
tables indicate which types of degradation or microphone type
affect the performance the most. Results indicate that in codec
degradation condition we have the worst recognition. The DET
plot for different conditions of the evaluation portion in also
shown in Figure 2. Interestingly, we do not see much improve-
ment when evaluated on AssistClean-Core condition in compar-
ison to Core-Core condition.

5. Conclusions
We have presented the speaker recognition system used for the
SITW16 speaker recognition challenge. We investigated the im-
pact of source normalization as a technique for system adapta-
tion on the performance of the system. The proposed system
is based on i-vectors extracted in unsupervised fashion using
classic GMM. Post-evaluation analysis showed that using de-
velopment portion of the SITW database as a different source of
variability for Source-Normalized WCCN (SN-WCCN) results
in improvement of speaker recognition system through better
adaption of the system to evaluation condition.
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[14] N. Brümmer and E. de Villiers, “The bosaris toolkit user guide:
Theory, algorithms and code for binary classifier score process-
ing,” Documentation of BOSARIS toolkit, 2011.

[15] D. A. Van Leeuwen and N. Brümmer, An introduction to
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