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Abstract 
Often, prior knowledge of subword units is unavailable for 
low-resource languages. Instead, a global subword unit 
description, such as a universal phone set, is typically used in 
such scenarios. One major bottleneck for existing speech-
processing systems is their reliance on transcriptions. 
Unfortunately, the preponderance of data becoming available 
everyday is only worsening the problem, as properly 
transcribing, and hence making this data useful for training 
speech-processing models, is impossible. This work 
investigates learning acoustic units in an unsupervised manner 
from real-world speech data by using a cascade of an 
autoencoder and a Kohonen net. For this purpose, a deep 
autoencoder with a bottleneck layer at the center was trained 
with multiple languages. Once trained, the bottleneck-layer 
output was used to train a Kohonen net, such that state-level 
ids can be assigned to the bottleneck outputs. To ascertain how 
consistent such state-level ids are with respect to the acoustic 
units, phone-alignment information was used for a part of the 
data to qualify if indeed a functional relationship existed 
between the phone ids and the Kohonen state ids and, if yes, 
whether such relationship can be generalized to data that are 
not transcribed.  
Index Terms: unsupervised learning, Kohonen nets, speech 
recognition, low-resource languages, acoustic unit discovery. 

1. Introduction 
Creating speech technologies across multiple languages is 
often difficult and labor intensive. Before creating speech-
processing tools for a language, several requirements may 
have to be met. Firstly, the language having a written form, 
which enables orthographic transcription, facilitates speech-
processing system creation. Secondly, having some 
transcribed data is immensely useful, as most speech-
processing tools are based on supervised learning, with clear 
input-output pairs needed to train and deploy a reasonable 
model. 

In a language, words are usually represented in terms of 
phonemes, which are the basic phonological unit of a 
language, and phoneme inventories vary from language to 
language [1]. With social networking, affordable high-speed 
internet, and open sharing of multimedia content, the past 
decade has witnessed increased interest in speech tools geared 
toward multi-language processing capabilities. Basic speech 
tools exist for the world’s popular languages; but for low-
resource and less frequently used languages, building speech-
processing systems is quite challenging. Availability of 
transcribed material is often limited, as it necessitates 
availability of language experts who know the target language 
well, and often such resources are unavailable. 

Audio materials are usually more readily available, hence 
the speech tools that leverage audio-only material have the 
edge in dealing with new languages. Several studies have 
investigated ways to directly learn subword units in an 
unsupervised manner from the speech signal. Studies in [2, 3] 
proposed unsupervised acoustic modeling through 
segmentation, clustering, and modeling each cluster, where a 
priori knowledge about the number of subword unit to be 
learned was assumed to be known. In [4], a single-state hidden 
Markov model (HMM) was trained by using the entirety of the 
available acoustic data, and then iterative state-splitting was 
performed based on an objective function. Pattern discovery 
was used in [5], which trained HMMs for each found pattern 
in the acoustic data. In [6], an unsupervised model was 
proposed that simultaneously segmented the speech signal, 
discovered subword units and learned an HMM for each 
induced acoustic unit. In [7], the authors assumed that the 
training data had been word transcribed and that some 
relationship existed between the orthography and 
pronunciation of the language. To discover acoustic units from 
context-dependent grapheme models, [7] used spectral 
clustering that worked on full HMM models. In [8], an 
autoencoder (AE)-based unsupervised acoustic-unit discovery 
was proposed, in which the authors showed that an AE 
representation is better than Gaussian posteriograms in a 
spoken-query classification task. In that work, the AE 
decisions were discretized through thresholding.  

In this work, we investigate building bottleneck-deep 
autoencoder (BN-DAE) networks that learn an acoustic space 
in an unsupervised, data-driven manner. Speech from multiple 
languages is used to train the BN-DAE. The target language 
on which results will be evaluated is not included in the 
training languages. Once the BN-DAE network is learned, the 
bottleneck (BN) features are used to train Kohonen nets. 
Different Kohonen nets (KN) are trained, with the networks 
having different numbers of target neurons and different BN 
feature time-contextualization. Kohonen nets [7] employ 
competitive learning, and are a form of a self-organizing map 
that is trained in an unsupervised, data-driven manner. The 
Kohonen net’s role is assigning state-level ids to the BN 
features such that a discrete representation is created from the 
continuous BN feature space. Once the KNs are learned, they 
are used to decode speech signals and produce a sequence of 
hypothesized state ids. We use a small amount of data with 
phone alignments to obtain the conditional distribution of a 
phone given a KN state id. This conditional distribution is 
used to predict phone ids given KN ids. The results are 
reported in terms of frame-level phone accuracy, which 
indicates that the proposed approach can learn states similar to 
phone units in an unsupervised manner.  

The paper is structured as follows. First, in Section 2, we 
briefly describe the dataset used in our experiments. In Section 
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3, we present the BN-DAE system and how it was trained. In 
Section 4, we present the KNs used in this work and briefly 
describe how they were trained. In Section 5, we show the 
results from our experiments. Finally, in Section 6, we present 
our conclusions.  

2. Dataset and acoustic features 
The speech data used to train the BN-DAE and KN models 
was taken from seven language training sets, from various 
sources: Assamese (BABEL); Bengali (BABEL); Dari 
(Transtac); Egyptian Arabic (Callhome); English (Fisher); 
Mandarin (GALE); and Spanish (Callhome). We used the 
following Babel data releases:  Amharic, IARPA-babel307b-
v1.0b; Assamese, IARPA-babel102b-v0.5a; Bengali, IARPA-
babel103b-v0.4b; and Pashto, IARPA-babel104b-v0.4bY.  
FullLP training sets were used. In total, this comprised 
approximately 650 hours of audio data in the seven languages. 
All data was sampled at 8 kHz. Note that neither speaker- nor 
language-level information was ever used in any of the 
processing outlined in this work. The raw audio data was 
parameterized as gammatone filterbank energy (GFB) acoustic 
features. Gammatone filters are a linear approximation of the 
auditory filtering performed in the human ear. The GFBs were 
extracted by using SRI International's implementation of a 
time-domain gammatone filterbank, which contained 40 
channels that were equally spaced on the equivalent 
rectangular bandwidth (ERB) scale, between 150 Hz and 3750 
Hz. For the acoustic features, the analysis window was 25.6 
ms, with a frame rate of 10 ms. The GFBs used 15th power 
root nonlinear compression. 

The performance of the proposed approach was evaluated 
on an unseen language: Amharic, which was taken from the 
BABEL program. Note that the Amharic phone sets were 
mapped to a broad phone set, such that all the Amharic phones 
were a subset of the phones in the seven-language training set. 
We had approximately seven hours of data for Amharic, which 
were split three ways: one hour for learning the conditional 

distribution of a phone given a KN id, one hour as 
development data, and the remaining five hours for testing. 

 

3. Bottleneck-deep autoencoder (BN-DAE) 
system 

The BN-DAE system was a five-hidden-layer, fully connected 
DNN system, with the third hidden layer containing a 
bottleneck of eighty neurons. The remaining hidden layers had 
1024 neurons. The hidden layers had sigmoid activations, 
whereas the output layer had linear activation. The BN-DAE 
was trained by using mean squared error (MSE) 
backpropagation. The input to the BN-DAE system was 40 
GFBs with a splicing of 11, resulting in 440 dimensional 
features. The output was the same 40 GFBs, but with a 
splicing of three. A block diagram of the BN-DAE and KN 
system is shown in Figure 1. 

The BN-DAE system was trained using the mean squared 
error criteria, with Gaussian random Bernoulli (GRBM) pre-
training. The networks were trained by using an initial few 
iterations with a constant learning rate of 0.09, followed by 
learning rate decrease by a factor of 0.8 based on cross-
validation error decrease. Training stopped when no further 
significant reduction in cross-validation error was noted or 
when cross-validation error started to increase. 
Backpropagation was performed by using stochastic gradient 
descent with a mini-batch size of 512. The BN features from 
the BN-DAE were then used as the input to the KN. 

4. Kohonen nets (KNs) 
A Kohonen net is a type of artificial neural network that uses 
unsupervised learning to generate a low-dimensional 
discretized abstraction of relatively high dimensional input 
observations. They are also popularly known as self-
organizing maps (SOMs), which employ competitive learning 
that preserves the topological properties of the input feature 
space [10].  

 

 
Figure 1: The unsupervised acoustic unit discovery system using a bottleneck-deep autoencoder (BN-DAE) system and Kohonen nets. 
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Like other neural nets, KNs consists of neurons that are 

parameterized by their weights and biases. The goal of the KN 
is to differentiate excitation signals, and each neuron learns to 
respond similarly for similar input excitation signals. Such 
topological partitioning of the input space is learned through a 
competitive learning approach, which allows only one neuron 
to be active given an input excitation signal, hence inhibiting 
the excitation of the other neurons.  

In this work, the weights of the neurons were initialized 
with small random numbers, and then the training was 
performed in mini-batches. Each input sample was presented 
to the KN multiple times through random alteration of the 
mini-batches. For each training example, the network 
computed its Euclidean distance to all weight vectors. The 
neuron whose weight vector was most similar won the 
competition. The weights of the winning neuron and its 
neighbors in the SOM lattice were adjusted toward the input 
vector. The weights of the winning neuron were adjusted by 
using the Kohonen learning rule, which is stated below for the 
case where the ith neuron wins: 

 

��(�) = ��(� − 1) + �(�, �, �)�(�){	(
) − ��(� − 1)} (1) 
 

Where q is the step index; j is a neighboring neuron; p(t) is 
the input feature to the KN; and � is the neighborhood 
function that specifies the distance between neighboring 
neurons i and j in step q. Note that the neighborhood function 
� shrinks with time, where at the onset a broad neighborhood 
is considered, and with training, the neighborhood map is 
reduced to only the immediately neighboring neurons.  

The goal of the KN training was to ensure that the winning 
neuron was more likely to win the competition the next time a 
similar vector was presented to the network, and less likely to 
win when a very different input vector was presented. As more 
and more inputs were presented, each neuron in the layer 
closest to a group of input vectors adjusted its weight vector 
toward those input vectors. Eventually, with sufficient number 
of neurons, the network was able to learn clusters, where every 
cluster of similar input observations would have a winning 
neuron when a vector belonging to that cluster was presented. 
At the end of training, the competitive network learned to 
categorize the input vectors it saw, with the outputs being 
cluster ids. 

5. Experiments and results 

The BN-DAE networks were trained with 40-dimensional 
GFB features by using the architecture depicted in Figure 1. 
Note that the data used for training the BN-DAE system did 
not contain any target language data (in this case, Amharic). 
The bottleneck layer had eighty neurons. We explored the 
reliability of the bottleneck features by training a DNN 
acoustic model, where a five-hidden-layer acoustic model was 
trained with the seven languages (Assamese, Bengali, Dari, 
Egyptian Arabic, English, Mandarin, and Spanish) and tested 
with Amharic. Compared to a baseline DNN model trained 
with GFB features, the BN-DAE features were found to 
reduce phone error rates, indicating that the bottleneck layers 
of the BN-DAE network could learn meaningful information 
about the acoustic data for speech recognition tasks. We also 

trained a stacked bottleneck (SBN) system similar to that in 
[11], and the results were similar as for the BN-DAE system. 

The BN features extracted from the BN-DAE model were 
then time contextualized (spliced) and then used to train the 
KN model. We investigated KNs with sixty and eighty classes, 
where the features were spliced over 15 frames with and 
without frame-skipping. In the latter case with frame skipping 
(where every other frame was skipped), the dimension of the 
input BN-DAE features were almost reduced to half. The KNs 
were trained with a mini-batch size of 1000, with 200 epochs 
per mini-batch and two-fold training over the mini-batches. 
The Kohonen learning rate was selected as 0.01. 

Once the KNs were trained, the BN features extracted 
from the Amharic data were used to decode the KN models, 
which resulted in a sequence of KN ids. In order to map the 
learned KN ids to the Amharic phone sets, we used an hour of 
Amharic data with transcriptions to generate forced 
alignments. The KN ids and phone alignments were then used 
to generate a K2P lookup table of conditional probability 
distribution p(a|k), where a is a phone label, and k is the KN 
id. Note that we observed altogether 33 unique phone tokens 
in Amharic, with three tokens corresponding to non-speech 
units SIL, SPN, and LAU. 

The KN outputs were treated as an independent process, 
where for each frame n, a phone id was assigned by employing 
the K2P lookup table using: 

 

  ��
 = �������	(�|�
)   (2) 
 

Note that for the decision in (2), neither the language 
model nor the temporal dependence of the KN ids with the 
phone tokens were used. The process is outlined in Figure 2. 

 

 
 

Figure 2: Schematics of K2P lookup table creation and KN-id 
decoding. 

The performance of the system is evaluated with respect to 
frame accuracy, which gives the proportion of the frames that 
were recognized correctly, compared to the alignments of the 
Amharic test as references. Table 1 presents the frame-
recognition accuracy obtained from the development (one 
hour) and test (five hours) sets from the four KN models 
trained in our experiments. 

KN ids 

Phone alignments 

K2P lookup 
table 

4 4 4 23 23 23 35 35 7 

b b b e e e e e e t t t ax ax 

8 8 8 8 8 28 28 29 29 29 

Decoded KN id  

decoded phone sequence m  m m m aj aj aj aj e e e 
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Table 1. Frame-recognition accuracy from different KN 
systems. 

 #class splice skip dev test 

KN-1 60 7 1 55.8 57.3 

KN-2 60 7 2 56.0 57.5 

KN-3 80 7 1 56.5 58.0 
KN-4 80 7 2 56.1 57.7 

 
To assess the performance of the above system, we also 

decoded the Amharic test data by using a DNN phone-
recognition system trained with the seven languages using the 
BN-DAE features. The DNN model had five hidden layers 
with 1200 neurons. The model was trained with crossword 
triphones, where altogether 4945 context-dependent (CD) 
states were used. Table 2 shows the frame-recognition 
accuracy from the DNN phone-recognition model, that uses a 
bigram language model. Note that the phone recognition 
model was trained with the seve-language training set, where 
Amharic data was not used for training. In Table 2, we also 
show the result from an updated KN-3 model (the best model 
in Table 1), which was rescored using K2P lookup table that 
was learned, avoiding 30 ms of information from the phone 
boundaries. 

Table 2. Frame-recognition accuracy from the best KN system 
and a DNN based phone recognition model trained with BN-
DAE features 

 splice skip dev test 
KN-3 updated 
K2P lookup 

7 1 68.3 70.6 

DNN-phone 
model 

7 1 74.6 76.1 

 
Table 2 shows that the KN-3 model with an updated 

lookup table obtains Amharic phone recognition quite 
competitively with respect to the DNN phone-recognition 
model. Note that in this approach, no language model (i.e., 
phone-sequence probabilistic relations between phone units) 
was used, nor has KN-id sequence-level information been 
used. Such information when used can improve phone-
detection accuracy.  

6. Conclusions 
In this work, we proposed an approach to learn acoustic units 
in an unsupervised fashion from the speech signal. Firstly, an 
acoustic subspace is learned through a bottleneck-deep 
autoencoder (BN-DAE) model that separates the acoustic units 
and hence simplifies the task of KN-based acoustic-unit 
discovery. The BN-DAE system had eighty neurons in its 
bottleneck layer, but neither the number of neurons in the BN 
layer nor the number of hidden layers in the BN-DAE system 
was optimized. GFB features were used to train the BN-DAE 
system. 

In the future, we plan to investigate other robust features 
such as modulation features [12, 13], damped oscillator 
features [14], etc., which have demonstrated better or 
competitive performance with respect to GFBs and hence 
could either provide better BN-DAE systems or be used to 

learn BN-DAE systems that capture complementary 
information that could improve performance when combined. 

We also plan to investigate KN models with larger 
numbers of target classes trained with BN-DAE systems 
learned from different acoustic features. We further plan to 
investigate temporal relationships across learned KN ids and 
to leverage phone-based language models to improve phone-
detection performance. We also plan to investigate KN-id-
based keyword detection, in which case the KN-id sequences 
could be used directly to search for keywords. 
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